【日本最速解答速報】共通テスト2023数学2B 第2問・第4問【今となっては過去問解説】 - 質問解決D.B.(データベース)

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問【今となっては過去問解説】

問題文全文(内容文):
共通テスト2023数学2B 第2問・第4問解説していきます.
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学2B 第2問・第4問解説していきます.
投稿日:2023.01.15

<関連動画>

2024年共通テスト徹底解説〜数学ⅠA第2問(1)2次関数〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅠA第2問(2)2次関数を徹底解説します

2024共通テスト過去問
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第5問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)次の問題$A$について考えよう。
$\boxed{\boxed{問題A} 関数y=\sin\theta+\sqrt3\cos\theta\left(0 \leqq \theta \leqq \displaystyle \frac{\pi}{2}\right)$の最大値を求めよ。}$

$\sin\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}=\displaystyle \frac{\sqrt3}{2},$ $\cos\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}=\displaystyle \frac{1}{2}$
であるから、三角関数の合成により

$y=\boxed{\ \ イ\ \ }\sin\left(\theta+\displaystyle \frac{\pi}{\boxed{\ \ ア\ \ }}\right)$

と変形できる。よって、$y$は$\theta=\displaystyle \frac{\pi}{\boxed{\ \ ウ\ \ }}$で最大値$\ \boxed{\ \ エ\ \ }\ $をとる。

(2)$p$を定数とし、次の問題$B$について考えよう。
$\boxed{\boxed{問題B} 関数y=\sin\theta+p\cos\theta\left(0 \leqq \theta \leqq \frac{\pi}{2}\right)の最大値を求めよ。}$

$(\textrm{i})$ $p=0$のとき、$y$は$\theta=\displaystyle \frac{\pi}{\boxed{\ \ オ\ \ }}$で最大値$\ \boxed{\ \ カ\ \ }\ $をとる。
$(\textrm{ii})$ $p \gt 0$のときは、加法定理
$\cos(\theta-\alpha)=\cos\theta\cos\alpha+\sin\theta\sin\alpha$
を用いると
$y=\sin\theta+p\cos\theta=\sqrt{\boxed{\boxed{\ \ キ\ \ }}}\cos(\theta-\alpha)$
と表すことができる。ただし、$\alpha$は
$\sin\alpha=\displaystyle \frac{\boxed{\boxed{\ \ ク\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}$、$\cos\alpha=\frac{\boxed{\boxed{\ \ ケ\ \ }}}{\sqrt{\boxed{\boxed{\ \ キ\ \ }}}}$、$0 \lt \alpha \lt \displaystyle \frac{\pi}{2}$
を満たすものとする。このとき、$y$は$\theta=\boxed{\boxed{\ \ コ\ \ }}$で最大値
$\sqrt{\boxed{\boxed{\ \ サ\ \ }}}$をとる。

$(\textrm{iii})$ $p \lt 0$のとき、$y$は$\theta=\boxed{\boxed{\ \ シ\ \ }}$で最大値$\boxed{\boxed{\ \ ス\ \ }}$をとる。

$\boxed{\boxed{\ \ キ\ \ }}~\boxed{\boxed{\ \ ケ\ \ }}、\boxed{\boxed{\ \ サ\ \ }}、\boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返
し選んでもよい。)
⓪$-1$
①$1$
②$-p$
③$p$
④$1-p$
⑤$1+p$
⑥$-p^2$
⑦$p^2$
⑧$1-p^2$
⑨$1+p^2$
ⓐ$(1-p)^2$
ⓑ$(1+p)^2$


$\boxed{\boxed{\ \ コ\ \ }}、\boxed{\boxed{\ \ シ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$\alpha$
②$\displaystyle \frac{\pi}{2}$


[2]二つの関数$f(x)=\displaystyle \frac{2^x+2^{-x}}{2}$、$g(x)=\displaystyle \frac{2^x-2^{-x}}{2}$ について考える。

(1)$f(0)=\boxed{\ \ セ\ \ }、g(0)=\boxed{\ \ ソ\ \ }$である。また、$f(x)$は相加平均
と相乗平均の関係から、$x=\boxed{\ \ タ\ \ }$で最小値$\ \boxed{\ \ チ\ \ }\$ をとる。
$g(x)=-2\$ となる$x$の値は$\log_2\left(\sqrt{\boxed{\ \ ツ\ \ }}-\boxed{\ \ テ\ \ }\right)$である。

(3)次の①~④は、$x$にどのような値を代入しても常に成り立つ。
$f(-x)=\boxed{\boxed{\ \ ト\ \ }}$ $\cdots$①
$g(-x)=\boxed{\boxed{\ \ ナ\ \ }}$ $\cdots$②
$\left\{f(x)\right\}^2-\left\{g(x)\right\}^2=\boxed{\ \ ニ\ \ }$ $\cdots$③
$g(2x)=\boxed{\ \ ヌ\ \ }\ f(x)g(x)$ $\cdots$④

$\boxed{\boxed{\ \ ト\ \ }}、\boxed{\boxed{\ \ ナ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$f(x)$
①$-f(x)$
②$g(x)$
③$-g(x)$


(3)花子さんと太郎さんは、$f(x)$と$g(x)$の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式($\textrm{A}$)~($\textrm{D}$)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式($\textrm{A}$)~($\textrm{D}$)の$\beta$に何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
$f(\alpha-\beta)=f(\alpha)g(\beta)+g(\alpha)f(\beta)$ $\cdots(\textrm{A})$
$f(\alpha+\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta)$ $\cdots(\textrm{B})$
$g(\alpha-\beta)=f(\alpha)f(\beta)+g(\alpha)g(\beta)$ $\cdots(\textrm{C})$
$g(\alpha+\beta)=f(\alpha)g(\beta)-g(\alpha)f(\beta)$ $\cdots(\textrm{D})$


(1),(2)で示されたことのいくつかを利用すると、式($\textrm{A}$)~($\textrm{D}$)のうち、
$\boxed{\boxed{\ \ ネ\ \ }}$以外の三つは成り立たないことが分かる。$\boxed{\boxed{\ \ ネ\ \ }}$は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

$\boxed{\boxed{\ \ ネ\ \ }}$の解答群
⓪$(\textrm{A})$
①$(\textrm{B})$
②$(\textrm{C})$
③$(\textrm{D})$

2021共通テスト過去問
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題5。ベクトルの問題。

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
平面上の点Oを中心とする半径1の円周上に、3点A,B,Cがあり、\\
\overrightarrow{ OA }・\overrightarrow{ OB }=-\frac{2}{3}および\overrightarrow{ OC }=-\overrightarrow{ OA }を満たすとする。tを0 \lt t \lt 1を満たす\\
実数とし、線分ABをt:(1-t)に内分する点をPとする。\\
また、直線OP上に点Qをとる。\\
\\
(1)\cos\angle AOB=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }} である。\\
また、実数kを用いて、\overrightarrow{ OQ }=k\overrightarrow{ OP }と表せる。したがって\\
\overrightarrow{ OQ }=\boxed{\ \ エ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ オ\ \ }\ \overrightarrow{ OB }  \ldots\ldots\ldots\ldots①\\
\overrightarrow{ CQ }=\boxed{\ \ カ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ キ\ \ }\ \overrightarrow{ OB }\\
となる。\\
\overrightarrow{ OA }と\overrightarrow{ OP }が垂直となるのは、t=\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} のときである。\\
\\
\\
\boxed{\ \ エ\ \ } ~ \boxed{\ \ キ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪kt  ①(k-kt)  ②(kt+1)\\
③(kt-1)  ④(k-kt+1)  ⑤(k-kt-1)\\
\\
以下、t ≠\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}とし、\angle OCQが直角であるとする。\\
\\
(2)\angle OCQが直角であることにより、(1)のkは\\
k=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }\ t-\boxed{\ \ シ\ \ }} \ldots②\\
となることがわかる。\\
\\
平面から直線OAを除いた部分は、直線OAを境に二つの部分に分けられる。\\
そのうち、点Bを含む部分をD_1、含まない部分をD_2とする。また、平面\\
から直線OBを除いた部分は、直線OBを境に二つの部分に分けられる。\\
そのうち、点Aを含む部分をE_1、含まない部分をE_2とする。\\
・0 \lt t \lt \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}ならば、点Qは\boxed{\ \ ス\ \ }。\\
・\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }} \lt t \lt 1ならば、点Qは\boxed{\ \ セ\ \ }。\\
\\
\\
\boxed{\ \ ス\ \ }、\boxed{\ \ セ\ \ }の解答群(同じものを繰り返し選んでもよい。)\\
⓪D_1に含まれ、かつE_1に含まれる\\
①D_1に含まれ、かつE_2に含まれる\\
②D_2に含まれ、かつE_1に含まれる\\
③D_2に含まれ、かつE_2に含まれる\\
\\
\\
(3)太郎さんと花子さんは、点Pの位置と|\overrightarrow{ OQ }|の関係について考えている。\\
t=\frac{1}{2}のとき、①と②により、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}とわかる。\\
\\
太郎:t≠\frac{1}{2}のときにも、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}となる場合があるかな。\\
花子:|\overrightarrow{ OQ }|をtを用いて表して、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}\\
を満たすtの値について考えればいいと思うよ。\\
太郎:計算が大変そうだね。\\
花子:直線OAに関して、t=\frac{1}{2}のときの点Qと対称な点をRとしたら\\
|\overrightarrow{ OR }|=\sqrt{\boxed{\ \ ソ\ \ }}となるよ。\\
太郎:\overrightarrow{ OR }を\overrightarrow{ OA }と\overrightarrow{ OB }を用いて表すことができれば、\\
tの値が求められそうだね。\\
\\
\\
直線OAに関して、t=\frac{1}{2}のときの点Qと対称な点をRとすると\\
\overrightarrow{ CR }=\boxed{\ \ タ\ \ }\ \overrightarrow{ CQ }\\
=\boxed{\ \ チ\ \ }\ \overrightarrow{ OA }+\boxed{\ \ ツ\ \ }\ \overrightarrow{ OB }\\
となる。\\
t≠\frac{1}{2}のとき、|\overrightarrow{ OQ }|=\sqrt{\boxed{\ \ ソ\ \ }}となるtの値は\frac{\boxed{\ \ テ\ \ }}{\boxed{\ \ ト\ \ }}である。
\end{eqnarray}

2021共通テスト数学過去問
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題5。平面幾何の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
第5問 \triangle ABCの重心をGとし、線分AG上で点Aとは異なる位置に点Dをとる。\\
直線AGと辺BCの交点をEとする。また、直線BC上で辺BC上にはない位置に点Fをとる。\\
直線DFと辺ABの交点をP、直線DFと辺ACの交点をQとする。\\
(1)点Dは線分AGの中点であるとする。このとき、\triangle ABCの形状に関係なく\frac{AD}{DE}=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}\\
である。また、点Fの位置に関係なく\frac{BP}{AP}=\boxed{\ \ ウ\ \ }×\frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }},\\
\frac{CQ}{AQ}=\boxed{\ \ カ\ \ }×\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}であるので、常に\frac{BP}{AP}+\frac{CQ}{AQ}=\boxed{\ \ ケ\ \ }\\
\\
\\
\boxed{\ \ エ\ \ }~\boxed{\ \ ケ\ \ }の解答群\\
⓪BC ①BF ②CF ③EF ④FP ⑤FQ ⑥PQ\\
\\
(2)AB=9, BC=8, AC=6とし、(1)と同様に、点Dは線分AGの中点であるとする。\\
ここで、4点B,C,Q,Pが同一円周上にあるように点Fをとる。このとき、\\
\\
AQ=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\ APであるから\\
\\
AP=\frac{\boxed{\ \ シス\ \ }}{\boxed{\ \ セ\ \ }}, AQ=\frac{\boxed{\ \ ソタ\ \ }}{\boxed{\ \ チ\ \ }}であり、CF=\frac{\boxed{\ \ ツテ\ \ }}{\boxed{\ \ トナ\ \ }}である。\\
\\
(3)\triangle ABCの形状や点Fの位置に関係なく、常に\frac{BP}{AP}+\frac{CQ}{AQ}=10となるのは\\
\frac{AD}{DG}=\frac{\boxed{\ \ ニ\ \ }}{\boxed{\ \ ヌ\ \ }}のときである。

\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 
PAGE TOP