ピックアップ
【数列】漸化式をパターンごとに完全攻略!
【数列】漸化式をパターンごとに完全攻略!
【数B】確率漸化式:さいころをn回投げたとき1の目が偶数回出る確率をp[n]とする(中略) (1)p1を求めよ。(2)p[n+1]をp[n]で表せ。(3)p[n] (n=1,2,3,..)を求めよ。
講師名:理数個別チャンネル
単元:
#数列#漸化式#数学(高校生)
動画更新情報(新着動画)
【数Ⅲ】【関数と極限】等式lim ax+b/cosx = 1/2が成り立つように、定数a、bの値を定めよ。
講師名:理数個別チャンネル
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
【数Ⅲ】【関数と極限】半径aの円Oの周上に動点Pと定点Aがある。Aにおける接線上にAQ=APであるような点Qを直線OAに関してPと同じ側にとる。PがAに限りなく近づくときPQ/⌒AP²の極限値を求めよ
講師名:理数個別チャンネル
単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
【受験算数】線路と平行な道を、秒速2mで走っている人と、秒速15mで走っているオートバイがあります。後方から来た電車が、人を10秒で、オートバイを36秒で追いこしました。オートバイの長さは考えない…
講師名:理数個別チャンネル
単元:
#算数(中学受験)#速さ#旅人算・通過算・流水算
教材:
#SPX#5年算数D-支援#中学受験教材
キーワード検索
・検索したいワードや問題文の一部を入力すると、そのワードにヒットした動画の写真とタイトルが下に表示されます。
・先生の名前などより詳しい情報を見てから選びたい場合は、右の🔍のところをクリックします。
より詳しい説明はこちら
ジャンル検索
単元で選ぶ
単元で選ぶ
算数(中学受験)(3637)
国語(中学受験)(14)
理科(中学受験)(345)
社会(中学受験)(127)
数学(中学生)(4200)
英語(中学生)(839)
理科(中学生)(800)
国語(中学生)(125)
社会(中学生)(295)
大学入試解答速報(343)
情報Ⅰ(高校生)(438)
数学(高校生)(12050)
数学検定・数学甲子園・数学オリンピック等(316)
英語(高校生)(2933)
英検・TOEIC・IELTS・TOEFL・IELTS等(952)
英語リスニング・スピーキング(1113)
理科(高校生)(2729)
国語(高校生)(479)
小論文(高校生)(52)
社会(高校生)(1070)
その他(5565)
先生で選ぶ
【楽しい授業動画】あきとんとん(2985)
英語ファイル / eigophile(546)
カサニマロ【べんとう・ふきのとうの授業動画】(1289)
共通テスト「情報I」 専門チャンネル(88)
中学受験算数・高校受験数学けいたくチャンネル(504)
高校入試から見た数学の世界「全部入試問題」by しろたん(1108)
数学・算数の楽しさを思い出した / Ken(264)
こばちゃん塾(709)
3rd School(939)
算数・数学ちゃんねる(356)
重吉(367)
受験算数の森(59)
受験メモ山本(318)
篠原好【京大模試全国一位の勉強法】(3937)
数学を数楽に(2283)
鈴木貫太郎(2419)
世界史予備校講師佐藤幸夫 Yukio Sato チャンネル(446)
【ゼロから理解できる】高校数学・物理(173)
とある男が授業をしてみた(2646)
ハクシ高校【数学科】良問演習チャンネル(185)
ハクシ高校【生物科】BIO TECH LAB(140)
hiro式・英語上達法(143)
PHOTOGLISH/岡崎修平塾(762)
福田次郎(2349)
ぺんぎん高校化学問題集(705)
ますただ(1924)
めいちゃんねる(299)
Morite2 English Channel(2217)
ユーテラ授業チャンネル【YouTubeの寺子屋】(603)
理数個別チャンネル(4192)
理数個別チャンネル「文系館」(15)
教材で選ぶ
教材で選ぶ
新着動画
【数Ⅲ】【関数と極限】等式lim ax+b/cosx = 1/2が成り立つように、定数a、bの値を定めよ。

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
投稿日:2026.02.07
問題文全文(内容文):
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
この動画を見る
等式 $\displaystyle \lim_{x \to \frac{\pi}{2}} \frac{ax + b}{\cos x} = \frac{1}{2}$
が成り立つように$,$ 定数 $a,b$ の値を定めよ。
【数Ⅲ】【関数と極限】半径aの円Oの周上に動点Pと定点Aがある。Aにおける接線上にAQ=APであるような点Qを直線OAに関してPと同じ側にとる。PがAに限りなく近づくときPQ/⌒AP²の極限値を求めよ

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
投稿日:2026.02.07
問題文全文(内容文):
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
この動画を見る
半径 $a$ の円 $\mathrm{O}$ の周上に動点 $\mathrm{P}$ と定点 $\mathrm{A}$ がある。
$\mathrm{A}$ における接線上に
$\mathrm{AQ = AP}$ であるような点 $\mathrm{Q}$ を直線 $\mathrm{OA}$ に関して $\mathrm{P}$ と同じ側にとる。
$\mathrm{P}$ が $\mathrm{A}$ に限りなく近づくとき$,$ $\displaystyle \frac{\mathrm{PQ}}{\mathrm{\stackrel{\huge\frown}{AP}}^2}$ の極限値を求めよ。
ただし$,$ $\mathrm{\stackrel{\huge\frown}{AP}}$ は $\angle \mathrm{AOP}$ ($\displaystyle 0 \lt \angle \mathrm{AOP} \lt \frac{\pi}{2}$)に対する
弧 $\mathrm{AP}$ の長さを表す。
【受験算数】線路と平行な道を、秒速2mで走っている人と、秒速15mで走っているオートバイがあります。後方から来た電車が、人を10秒で、オートバイを36秒で追いこしました。オートバイの長さは考えない…

単元:
#算数(中学受験)#速さ#旅人算・通過算・流水算
教材:
#SPX#5年算数D-支援#中学受験教材
指導講師:
理数個別チャンネル
投稿日:2026.02.07
問題文全文(内容文):
線路と平行な道を、秒速2mで走っている人と、秒速15mで走っているオートバイがあります。後方から来た電車が、人を10秒で、オートバイを36秒で追いこしました。
オートバイの長さは考えないものとして、次の問いに答えなさい。
(1) 電車の速さは秒速何mですか。
(2) 電車の長さは何mですか。
この動画を見る
線路と平行な道を、秒速2mで走っている人と、秒速15mで走っているオートバイがあります。後方から来た電車が、人を10秒で、オートバイを36秒で追いこしました。
オートバイの長さは考えないものとして、次の問いに答えなさい。
(1) 電車の速さは秒速何mですか。
(2) 電車の長さは何mですか。
【受験算数】長さ9mのバスが、長さ4mの自動車の後ろを 187mの間をあけて走っています。 バスがここから 400m進んだ地点で、自動車をちょうど追いこしました。バスが時速72kmのとき、自動車は…

【数Ⅲ】【関数と極限】次の極限を求めよ。(1) lim x²cos1/x(2) lim 1+sinx/x

単元:
#関数と極限#関数の極限#数学(高校生)#数Ⅲ
教材:
#4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師:
理数個別チャンネル
投稿日:2026.02.06
問題文全文(内容文):
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} x^2 \cos \frac{1}{x}$
(2) $\displaystyle \lim_{x \to - \infty} \frac{1 + \sin x}{x}$
この動画を見る
次の極限を求めよ。
(1) $\displaystyle \lim_{x \to 0} x^2 \cos \frac{1}{x}$
(2) $\displaystyle \lim_{x \to - \infty} \frac{1 + \sin x}{x}$
