理数個別チャンネル - 質問解決D.B.(データベース)

理数個別チャンネル

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

担当科目:【小中高生対象】算数、数学、理科、英語、他

理数個別指導学院の講師陣が運営する、小・中・高生対象の「算数・数学・理科・英語」の問題や単元のピンポイント解説動画コンテンツです。
分からなくて困っている単元や問題文の一部を「知恵袋」感覚で是非検索してみてください。
「ほぼ毎日」更新中です!!

【高校化学】有機化合物の特徴 セミナー化学240

アイキャッチ画像
単元: #化学#理科(高校生)
教材: #その他(中高教材)#セミナー化学基礎・化学
指導講師: 理数個別チャンネル
問題文全文(内容文):
有機化合物に関する次の記述のうち,正しいものを1つ選べ。 (ア)構成元素の種類が多いため,化合物の種類も非常に多い (イ)分子式が同じでも,構造や性質の異なるものがある (ウ)一般に,融点や沸点が高く,可燃性の物が多い (エ)分子からなる物質が多く,水に溶けやすいが,有機溶媒には溶けにくい
この動画を見る 

【受験算数】2023年渋谷教育学園渋谷中:算数大問4解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#渋谷教育学園渋谷中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
渋谷教育学園附属渋谷中2023年算数入試問題:大問4

式ア+イ×ウ+エ×オ×カの、アからカに異なる数を1個ずつ入れて計算した答えをAとします。

(1)1,2,3,4,5,6の6個の数をアからカに入れます。アに6、イに1をそれぞれ入れた時、Aが奇数となるAをすべて答えなさい。

(2)1,2,3,4,5,6,7,8の8個の数から6個を選んでAが奇数となるようにアからカに数を入れます。
アが偶数である時、最も大きなAと最も小さなAの差を答えなさい。

(3)1,2,3,4,5,6の6個の数をエ×オ×カが4の倍数になるようにアからカに数を入れます。
この時、Aが偶数となるAは何通りありますか?
この動画を見る 

有効数字を完全マスター!セミナー物理5、7、8

アイキャッチ画像
単元: #物理#理科(高校生)
教材: #セミナー物理基礎・物理
指導講師: 理数個別チャンネル
問題文全文(内容文):
5.有効数字の桁数に注意して、次の測定値の計算をせよ。 (1)2.6+1.6 (2)5.1+3.56 (3)8.5+4.5 (4)4.2-0.6 (5)4.2-0.76 (6)12-4.3 (7)2.0 ×3.0 (8)1.5x2.5 (9)1.75✕2.1 (10)2.0÷3.0 (11)2.00÷3.0 (12)1.50÷8.0 7.有効数字の桁数に注意して、次の測定値の計算をせよ。 (1)3.2✕10^2+2.5✕10^2 (2)4.75✕10^3+2.7✕10^4 (3)5.1✕10^-4-2.4✕10^-4 (4)3.72✕10^6-2.5✕10^5 (5)(6.0x10^5)✕(2.5x10^2) (6)(4.15 X 10^3) ✕ (2.0X 10^-6) (7)(9.6✕10^6)÷(1.6✕10^3) (8)(7.50x10^4)÷(1.5✕10^-2) 8.ある長方形の縦、横の辺の長さが、4.0cm、12.0cmと測定された。 長方形の周囲の長さと面積をそれぞれ計算で求め、次の中から適当なものを選べ。 周囲の長さ(① 32.0cm② 32cm } 面積{③48.0㎠④ 48㎠}
この動画を見る 

複素数と方程式 4STEP数Ⅱ 117,118,119 解と係数の利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):
2次方程式$(x+1)(x-1)+(x-1)(x-2)+(x-2)(x+1)=0$
の2つの解をα、βとするとき、次の式の値を求めよ。
$\dfrac{1}{(α-2)(β-2)}+\dfrac{1}{(α-1)(β-1)}+\dfrac{1}{(α+1)(β+1)}$

解の公式を用いて、次の2次式を因数分解せよ。
(1) $x^2-xy-x+2y-2$
(2) $2x^2-5xy+2y^2+x+y-1$

次の連立方程式を解け。
(1) $x+y=3$
$x+y+xy=-7$
(2) $x^2+y^2=13$
$xy=6$
この動画を見る 

複素数と方程式 4STEP数Ⅱ 114,115,116 複素数の計算利用【ホーン・フィールドがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式
指導講師: 理数個別チャンネル
問題文全文(内容文):

(4STEP問題79)
次の式を計算せよ。
(1)$(\dfrac{3-2i}{2+3i})^2$
(2)$(\dfrac{-1+\sqrt{3}i}{2})^3$
(3)$(2+i)^3+(2-i)^3$
(4)$(\dfrac{1}{i}-i)(\dfrac{2}{i}+i)i^3$
(5)$\dfrac{2+3i}{3-2i}+\dfrac{2-3i}{3+2i}$
(6)$\dfrac{1}{i}+1-i+i^2-i^3+i^4$

(4STEP問題80)
$x=\dfrac{-1+\sqrt{5}i}{2}$,$y=\dfrac{-1-\sqrt{5}i}{2}$であるとき、次の式の値を求めよ。
(1)$x+y$
(2)$xy$
(3)$x^2+y^2$
(4)$x^3+y^3+x^2y+xy^2$

3 (4STEP問題81)
次の等式を満たす実数x,yの値を求めよ。
(1)$(2i+3)x+(2-3i)y=5-i$
(2)$(1-2i)(x+yi)=2+6i$
(3)$(1+xi)^2+(x+i)^2=0$
(4)$\dfrac{1}{2+i}+\dfrac{1}{x+yi}=\dfrac{1}{2}$
この動画を見る 

微分法と積分法 4STEP数Ⅱ 429 極値の利用3【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#接線と増減表・最大値・最小値#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法
指導講師: 理数個別チャンネル
問題文全文(内容文):
f(x)は3次関数で、x=1で極大値6をとり、x=2で極小値5をとる。f(x)を求めよ。
この動画を見る 

数と証明 4STEP数Ⅱ 30,31,32 分数式の計算【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式を計算せよ。

(1) $\dfrac{2}{1+a}+\dfrac{4}{1+a^2}+\dfrac{2}{1-a}+\dfrac{8}{1+a^4}$

(2) $\dfrac{ca}{(a-b)(b-c)}+\dfrac{ab}{(b-c)(c-a)}+\dfrac{bc}{(c-a)(a-b)}$

次の式を計算せよ。

(1) $\dfrac{x+2}{x}+\dfrac{x+3}{x+1}+\dfrac{x-5}{x-3}+\dfrac{x-6}{x-4}$

(2)$\dfrac{2}{(a-1)(a+1)}+\dfrac{2}{(a+1)(a+3)}+\dfrac{2}{(a+3)(a+5)}$

$x+\dfrac{1}{x}=4$のとき,

$x^2+\dfrac{1}{x^2}$

$x^3+\dfrac{1}{x^3}$

の値を求めよ。
この動画を見る 

数と証明 4STEP数Ⅱ 14,15 二項定理の活用【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):


14 次の□に入る数を,二項定理を用いて求めよ。
${}_{101} \mathrm{ C }_0+{}_{101} \mathrm{ C }_2+{}_{101} \mathrm{ C }_4+…$$…+{}_{101} \mathrm{ C }_{98}+{}_{101} \mathrm{ C }_{100}=2^□$

15 二項定理を用いて,次のことを証明せよ。
ただし,nは3以上の整数とする。

(1)$(1+\dfrac{1}{n})^n>2$

(2) x>0 のとき $(1+x)^n>1+nx+\dfrac{n(n-1)}{2}x^2$




この動画を見る 

微分法と積分法 4STEP数Ⅱ 428 極値の利用2【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³+ax²+bx+cがx=-1で極大値34をとり、x=5で極小値をとるように、定数a,b,cの値を求めよ。また、極小値を求めよ。
この動画を見る 

微分法と積分法 4STEP数Ⅱ 427 極値の利用1【マコちゃんねるがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法
指導講師: 理数個別チャンネル
問題文全文(内容文):
関数f(x)=x³-3x²+ax+bがx=3で極小値-26をとるように、定数a,bの値を定めよ。また、極大値も求めよ。
この動画を見る 

数と証明 4STEP数Ⅱ 11,12,13,19 展開式の係数【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):
11.次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

12.次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

13.次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

19.次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
この動画を見る 

数と証明 4STEP数Ⅱ 6,7,25 3次式の展開、因数分解、割り算【さこすけ’s サイエンスがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明
指導講師: 理数個別チャンネル
問題文全文(内容文):
6(a+b+c)³を展開せよ。

7 次の式を因数分解せよ。
(1) x³-3x²+6x-8 (2)8a³-36a²b+54ab²-27b³

25 次の式A,Bをxについての多項式とみて、AをBで割った商と余りを求めよ。
(1)A=2x³+7ax²+5a²x+6a³, B=x+3a
(2)A=x³-3ax²+4a³, B=x²-2ax-2a²
(3)A=x⁴+x²y²+y⁴, B=x²+xy+y²
(4)A=2x²+4xy-3y²-5x+2y-1, B=x+y+2
この動画を見る 

三角関数 4STEP数Ⅱ282 三角関数の等式不等式応用【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の方程式,不等式を解け。
(1)$2sin^2θ-3cosθ=0$
(2)$2cos^2θ-3sinθ-3=0$
(3)$2sin^2-\sqrt{3}sinθ\lt 0$
(4)$2sin^2θ-4<5cosθ$
(5)$2cos²θ\leqq sinθ+1$
(6)$sinθ\lt tanθ$
この動画を見る 

【数学】体系問題集2幾何176:三平方の定理:平面図形 共通接線の長さ1

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #体系数学#体系数学問題集2(幾何編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)図1で、2つの円O,O´は外接しており、A,Bは共通接線の接点である。O,O´の半径がそれぞれ5cm,2cmであるとき、線分ABの長さを求めなさい。
(2)図2で、A,Bは、2つの円O,O´の共通接線の接点である。O,O´の半径がそれぞれ5cm,3cmで、2つの円の中心間の距離が10cmであるとき、線分ABの長さを求めなさい。
この動画を見る 

【数学】体系問題集2幾何175:三平方の定理:平面図形 四角形の面積

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #体系数学#体系数学問題集2(代数編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の四角形ABCDの面積を求めなさい。ただし、(1)で、AD//BCである。
この動画を見る 

三角関数 4STEP数Ⅱ281三角関数の最大値最小値2【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
aは定数とする。関数$y=2asinθ-cos^2θ$ $(0≦θ≦π)$の最小値を求めよ。
この動画を見る 

【削除覚悟】英検2級要約問題の倒し方【実践編】

アイキャッチ画像
単元: #英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級
指導講師: 理数個別チャンネル
問題文全文(内容文):
●以下の英文を読んで、その内容を英語で要約し、解答欄に記入しなさい。
●語数の目安は45語〜55語です。
●解答は、解答用紙の裏面にある英文要約解答欄に書きなさい。なお、解答欄の外に書かれたものは採点されません。
●解答が英文の要約になっていないと判断された場合は、0点と採点されることがあります。
英文をよく読んでから答えてください。

When exercising, some people like to walk or run, while others may join a gym or take swimming lessons. There are other options, too. These days, cycling is a very popular way for people to exercise.
Why do people choose cycling? Cycling is an excellent way to keep fit because it is good for the health, and it does not cause too much stress on the knees and back. Cycling also does not produce CO2 or cause traffic jams, so it is good for society when people use bicycles for commuting to work or going to school.
However, it might be difficult to ride a bicycle when it is raining heavily or snowing. Also, some places could be dangerous to ride, like narrow roads or roads with a lot of traffic. As a result, accidents involving cyclists may occur.
この動画を見る 

【数学】体系問題集2幾何174:三平方の定理:平面図形 三角形の面積+ヘロンの公式

アイキャッチ画像
単元: #数学(中学生)#中3数学#三平方の定理
教材: #体系数学#体系数学問題集2(幾何編)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の△ABCの面積を求めなさい。(3辺の長さが2cm、3cm、4cmの三角形の面積を求めよ)
この動画を見る 

数列 4STEP数B 43,44,45,47 約数の和と複利計算【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
43 初項が1,公比が3である等比数列で、初めて100より大きくなるのは第何項
か。また,初項から第何項までの和が初めて 1000より大きくなるか。
44 次の数の正の約数の和を求めよ
(1)$3^7$
(2)$3^4×7^3$
(3)864
45 初項1,公比2,項数nの等比数列において,各項の和、積、逆数の和を,それぞれS,P,Tとするとき,等式$S^n=P^2T^n$が成り立つことを証明せよ。
47 毎年度初めに1万円ずつ積み立てる。年利率を0.6%とし、1年ごとの複利で第10年度末には元利合計はいくらになるか。ただし,$1.006^10=1.0616$ として計算し,1円未満は切り捨てよ。
この動画を見る 

数列 4STEP数B 39,40,41,42 等比数列の連立【TAKAHASHI名人がていねいに解説】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#数列
指導講師: 理数個別チャンネル
問題文全文(内容文):
39.初項が1である等比数列$a_{n}$と、初項2である等比数列$b_{n}$がある
$c_{n} = a_{n} + b_{n}$とおくとき、$c_2=6$,$c_3=11$,$c_4=20$である
数列$c_{n}$の一般項を求めよ

40.(1)公比-2、初項から第10項までの和が-1023である等比数列の初項を求めよ
 (2) 第2項が6、初項から第3項までの和が21である等比数列の初項と公比を求めよ

41.次の等比数列について、初項と公比を求めよ。ただし、公比は実数とする。
(1) 初めの2項の和が-2、次の2項の和が-8
(2) 初項から第3項までの和が3、第4項から第6項までの和が-24

42. 初項から第10項までの和が4、初項から第20項までの和が24である等比数列について、初項から第40項までの和を求めよ。ただし、公比は実数とする
この動画を見る 

三角関数 4STEP数Ⅱ280 三角関数の最大値最小値1【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の最大値,最小値があれば,それを求めよ。また,そのときのθの値を求めよ。

(1) $y=\sin (θ-\displaystyle \frac{π}{3})$ $(0\leqq θ\leqq π)$

(2) $y=\tan (2θ-\displaystyle \frac{π}{4})$ $(0\leqq θ\leqq \displaystyle \frac{π}{4})$

(3) $y=\sin^2 θ-4\sin θ+1$ $(0\leqq θ\lt 2π)$

(4) $y=\sin^2 θ+\cos θ+1$ $(0\leqq θ\lt 2π)$

(5) $y=2\tan^2 θ+4\tan θ+5$ $(-\dfrac{π}{2}\lt θ\lt \dfrac{π}{2})$
この動画を見る 

三角関数 4STEP数Ⅱ279 三角関数の等式不等式(周期が変わる場合)【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\cos (2θ-\displaystyle \frac{π}{3})=\displaystyle \frac{1}{2}$

(2) $\sin (2θ+\displaystyle \frac{π}{6})=\displaystyle \frac{1}{\sqrt{2}}$

(3) $\cos (2θ+\displaystyle \frac{π}{4})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (2θ+\displaystyle \frac{π}{3})\geqq -\displaystyle \frac{1}{\sqrt{3}}$
この動画を見る 

三角関数 4STEP数Ⅱ278 三角関数の不等式2【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
$0\leqq θ\lt 2π$のとき,次の不等式を解け。
(1) $\sin (θ+\displaystyle \frac{π}{4})\leqq \displaystyle \frac{\sqrt{3}}{2}$

(2) $\tan (θ-\displaystyle \frac{π}{6})\gt 1$

(3) $\cos (θ-\displaystyle \frac{π}{3})\lt -\displaystyle \frac{\sqrt{3}}{2}$

(4) $\tan (θ+\displaystyle \frac{π}{6})\geqq -\sqrt{3}$
この動画を見る 

【河合塾】【情報Ⅰ】2024年度第1回全統共通テスト模試第3問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施された河合塾の全統共テ模試『情報Ⅰ』の第3問の解説です!
この動画を見る 

【河合塾】【情報Ⅰ】2024年度第1回全統共通テスト模試第1問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施された河合塾の全統共テ模試『情報Ⅰ』の第1問の解説です!
この動画を見る 

【河合塾】【情報Ⅰ】2024年度第1回全統共通テスト模試第4問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施された河合塾の全統共テ模試『情報Ⅰ』の第4問の解説です!
この動画を見る 

【新型英検直前企画】英検3級・準2級・2級(準1級の新型英検scbtの情報もあり!)の新型問題対策【しまだじろう・YAKISOBA先生】※級ごとのチャプター有り+要約添削サービスのお知らせ

アイキャッチ画像
単元: #英検・TOEIC・IELTS・TOEFL・IELTS等#英検#英検2級#英検準2級#英検3級#英検準1級
指導講師: 理数個別チャンネル
問題文全文(内容文):
◎3級
Hi,
Thank you for your e-mail.
I heard that you went to your friend's birthday party. I want to know
more about it. How many people were at the party? And how was the
food?
Your friend,
James
================================
Hi, James!
Thank you for your e-mail.
<解答欄に記入しなさい>
Best wishes,

◎準2級
Hi!
Guess what! My father bought me a robot pet last week online. I wanted
to get a real dog, but my parents told me it's too difficult to take care of
dogs. They suggested that we get a robot dog instead. I'm sending a
picture of my robot with this e-mail. My robot is cute, but there's a
problem. The battery doesn't last long. Do you think that robot pets will
improve in the future?
Your friend,
Alex
================================
Hi, Alex!
Thank you for your e-mail.
<解答欄に記入しなさい>
Best wishes,

◎2級
●以下の英文を読んで、その内容を英語で要約し、解答欄に記入しなさい。
●語数の目安は45語~55語です。
●解答は、解答用紙の裏面にある英文要約解答欄に書きなさい。なお、解答欄の外に書かれたものは採点されません。
●解答が英文の要約になっていないと判断された場合は、0点と採点されることがあります。英文をよく読んでから答えてください。

Usually, university students go to their campus and take their classes there in person. Some of them may also visit other universities and join their programs. There are other options to take lessons, too. These days, online classes are available at many universities.

When students belong to an online program, they can have the opportunity to access their classes in two main ways. They can attend them live or view the recordings of them afterward by streaming or downloading them whenever they want over the Internet. Also, students do not have to commute to school, so they do not have to pay for things like bus or train tickets.

On the other hand, studying online can cause some students to become lonely because they do not meet their other classmates. On top of that, it can take time for them to build their relationships with their professors due to a lack of face-to-face interactions.
この動画を見る 

【河合塾】【情報Ⅰ】2024年度第1回全統共通テスト模試第2問解説

アイキャッチ画像
単元: #情報Ⅰ(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: 理数個別チャンネル
問題文全文(内容文):
2024/05/05に実施された河合塾の全統共テ模試『情報Ⅰ』の第2問の解説です!
この動画を見る 

【数学模試解説】2024年度第1回全統マーク模試数Ⅰ,A(新課程)第一問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第一問

[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると

$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$

である。

(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である

(2)xについての連立不等式

$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$

を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。

オ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x$

カ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$  ② $\displaystyle \frac{1}{β}\lt x$

(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。

[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき

$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$

である。

△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき

$PC=\sqrt{ソ}$

である。

また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると

$CD= タ $

であり、

$∠ADC= チツ°$

である。

直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。

太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。

$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る 

三角関数 4STEP数Ⅱ277 三角関数の方程式【NI・SHI・NOがていねいに解説】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材: #4STEP(4ステップ)数学#4STEP数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数
指導講師: 理数個別チャンネル
問題文全文(内容文):
0≦θ<2πのとき,次の方程式を解け。
(1) $\sin (θ-\displaystyle \frac{π}{3})=-\displaystyle \frac{\sqrt{3}}{2}$
(2) $\cos (θ+\displaystyle \frac{π}{6})=\displaystyle \frac{1}{\sqrt{2}}$
(3) $\tan (θ+\displaystyle \frac{π}{4})=\displaystyle \frac{1}{\sqrt{3}}$
(4) $\cos (θ-\displaystyle \frac{π}{6})=-1$
この動画を見る 
PAGE TOP