【小6 算数】 小6-22 速さの表し方② ・ 練習編 - 質問解決D.B.(データベース)

【小6 算数】  小6-22  速さの表し方② ・ 練習編

問題文全文(内容文):
みはじの問題は①____の罠に注意しよう!

②秒速40Kmで進む電車が3Km進むのにかかる時間は?
③3時間で72Km進バスの速さは分速何m?
④分速9Kmで飛ぶ飛行機が5時間で進む道のりは?
⑤時速24Kmを分速で表すと?
単元: #算数(中学受験)#速さ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
みはじの問題は①____の罠に注意しよう!

②秒速40Kmで進む電車が3Km進むのにかかる時間は?
③3時間で72Km進バスの速さは分速何m?
④分速9Kmで飛ぶ飛行機が5時間で進む道のりは?
⑤時速24Kmを分速で表すと?
投稿日:2013.09.10

<関連動画>

高評価か?低評価か?

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算
指導講師: 数学を数楽に
問題文全文(内容文):
$1 \div (\frac{1}{3})^3 =$
この動画を見る 

半径が分からない!?でも解ける!基本・定番パターンもてんこ盛りの超良問!【中学受験算数】

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#平面図形#角度と面積#平面図形その他#成蹊中学
指導講師: こばちゃん塾
問題文全文(内容文):
下図について(1)~(3)に答えましょう.
(1)BとPを直線で結んだとき、BPの長さは?
(2)半円Oの面積は?
(3)青色部分の面積は?

*図は動画内参照

成蹊中学校、一部改題
この動画を見る 

【受験算数】速さ:東京都市大学付属2019年度第3回 大問3 トライアスロンの問題!:むさし君ととしお君はトライアスロンを行うことにしました。このトライアスロンは1.5km泳ぎ、次に自転車を40kmこぎ、最後に10km走って、その合計のタイムを競う競技です。2人が同時にスタートしてこの競技を行ったところ、次のようになりました。 ①むさし君が泳いだ時間は、としお君が泳いだ時間の3/5倍でした。 ②むさし君が自転車をこいだ時間は、としお君が自転車をこいだ時間の5/4倍でした。 ③としお君はむさし君より10分長く走りました。 ④としお君はスタートしてから2時間10分後にむさし君に追いつきました。 ⑤2人はスタートしてから4時間後にゴールしました。 あとの問いに答えよう。ただし、自転車に乗る時間と降りる時間は考えず、泳いでいる間、自転車をこいでいる間、走っている間の速さは、2人ともそれぞれ一定である。 問1 としお君は何分間走りましたか。 問2 (むさし君が泳いだ速さ):(むさし君が自転車をこいだ速さ):(むさし君が走った速さ)をもっとも簡単な整数の比で表そう。

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#速さ#速さその他#東京都市大学付属中学
指導講師: 理数個別チャンネル
問題文全文(内容文):
むさし君ととしお君はトライアスロンを行うことにしました。このトライアスロンは1.5km泳ぎ、次に自転車を40kmこぎ、最後に10km走って、その合計のタイムを競う競技です。2人が同時にスタートしてこの競技を行ったところ、次のようになりました。
①むさし君が泳いだ時間は、としお君が泳いだ時間の3/5倍でした。
②むさし君が自転車をこいだ時間は、としお君が自転車をこいだ時間の5/4倍でした。
③としお君はむさし君より10分長く走りました。
④としお君はスタートしてから2時間10分後にむさし君に追いつきました。
⑤2人はスタートしてから4時間後にゴールしました。
あとの問いに答えよう。ただし、自転車に乗る時間と降りる時間は考えず、泳いでいる間、自転車をこいでいる間、走っている間の速さは、2人ともそれぞれ一定である。
問1 としお君は何分間走りましたか。
問2 (むさし君が泳いだ速さ):(むさし君が自転車をこいだ速さ):(むさし君が走った速さ)をもっとも簡単な整数の比で表そう。
この動画を見る 

【算数練習】95(”大人”は頭の体操)

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積#相似と相似を利用した問題#図形の移動#平面図形その他
指導講師: 算数・数学ちゃんねる
問題文全文(内容文):
横の辺の長さが5㎝、縦の辺の長さが3㎝の長方形がある。
黄色い部分の面積は?
※図は動画内参照
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(7)〜n進法と割り算の余り

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (7)整数Zはn進法で表すとk+1桁であり、$n^k$の位の数が4、$n^i$ (1≦i≦k-1)の位の数が0、$n^0$の位の数が1となる。ただし、nはn≧3を満たす整数、kはk≧2を満たす整数とする。
(i)k=3とする。Zをn+1で割った時の余りは$\boxed{\ \ テ\ \ }$である。
(ii)Zがn-1で割り切れるときのnの値をすべて求めると$\boxed{\ \ ト\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP