大学入試問題#351「積分できて満足できない問題」 電気通信大学(2013) #定積分 #極限 - 質問解決D.B.(データベース)

大学入試問題#351「積分できて満足できない問題」 電気通信大学(2013) #定積分 #極限

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \int_{-n}^{n} (\displaystyle \frac{e^x}{e^x+e^{-x}})^2 dx$

出典:2013年電気通信大学 入試問題
チャプター:

00:00 問題紹介
00:07 本編スタート
06:08 作成した解答①
06:20 作成した解答②
06:30 エンディング(楽曲提供:兄いえてぃさん)

単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{1}{n}\displaystyle \int_{-n}^{n} (\displaystyle \frac{e^x}{e^x+e^{-x}})^2 dx$

出典:2013年電気通信大学 入試問題
投稿日:2022.10.29

<関連動画>

PAGE TOP