【高校数学】 数Ⅱ-14 恒等式③ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-14 恒等式③

問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。

①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$

②$x^2+y^2=a(x+y)^2+b(x-y)^2$
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がx,yの恒等式となるように、定数a、b、cの値を定めよう。

①$(a+2b)x+(2a+3b-3)y+(b-3c)=0$

②$x^2+y^2=a(x+y)^2+b(x-y)^2$
投稿日:2015.04.25

<関連動画>

福田のおもしろ数学241〜e^πとπ^eの大小

アイキャッチ画像
単元: #数Ⅱ#式と証明#微分法と積分法#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$e^πとπ^eの大小を比較して下さい。$
この動画を見る 

福田のおもしろ数学394〜6次の多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
6次の多項式$P(x)$について

$0\lt a \lt b$が

$P(a)=P(-a),P(b)=P(-b),P'(0)=0$

を満たしている。

任意の$x$に対し$P(x)=P(-x)$が

成り立つことを証明せよ。
この動画を見る 

福田の数学〜九州大学2022年理系第4問〜定積分の定義から性質を証明する

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
定積分について述べた次の文章を読んで、後の問いに答えよ。
区間$a \leqq x \leqq b$で連続な関数f(x)に対して$F'(x)=f(x)$となる$F(x)$を1つ選び、
$f(x)$のaからbまでの定積分を
$\int_a^bf(x)dx=F(b)-F(a)         \ldots①$
で定義する。定積分の値はF(x)の選び方によらずに定まる。
定積分は次の性質(A),(B),(C)をもつ。
(A)$\int_a^b\left\{kf(x)+lg(x)\right\}dx=k\int_a^bf(x)dx+l\int_a^bg(x)dx$
(B)$ a \leqq c \leqq b$のとき、$\int_a^cf(x)dx+\int_c^bf(x)dx=\int_a^bf(x)dx$
(C)区間$a \leqq x \leqq b$において$g(x) \geqq h(x)$ならば、$\int_a^bg(x)dx \geqq \int_a^bh(x)dx$
ただし、$f(x),g(x),h(x)$は区間$a \leqq x \leqq b$で連続な関数、$k,l$は定数である。
以下、$f(x)$を区間$0 \leqq x \leqq 1$で連続な増加関数とし、
nを自然数とする。定積分の性質$\boxed{\ \ ア\ \ }$を用い、定数関数に対する定積分の計算を行うと、
$\frac{1}{n}f(\frac{i-1}{n}) \leqq \int_{\frac{i-1}{n}}^{\frac{i}{n}}f(x)dx \leqq \frac{1}{n}f(\frac{i}{n})  (i = 1,2,\ldots,n)     \ldots②$
が成り立つことがわかる。$S_n=\frac{1}{n}\sum_{i=1}^nf(\frac{i-1}{n})$とおくと、
不等式②と定積分の性質$\boxed{\ \ イ\ \ }$より次の不等式が成り立つ。
$0 \leqq \int_0^1f(x)dx-S_n \leqq \frac{f(1)-f(0)}{n}     \ldots③$
よって、はさみうちの原理より$\lim_{n \to \infty}S_n=\int_0^1f(x)dx$が成り立つ。

(1)関数F(x),G(x)が微分可能であるとき、$\left\{F(x)+G(x)\right\}'=F'(x)+G'(x)$が
成り立つことを、導関数の定義に従って示せ。
また、この等式と定積分の定義①を用いて、性質(A)で$k=l=1$とした場合の等式
$\int_a^b\left\{f(x)+g(x)\right\}dx=\int_a^bf(x)dx+\int_a^bg(x)dx$ を示せ。
(2)定積分の定義①と平均値の定理を用いて、次を示せ。
$a \lt b$のとき、区間$a \leqq x \leqq b$において$g(x) \gt 0$ならば、$\int_a^bg(x)dx \gt 0$
(3)(A),(B),(C)のうち、空欄$\boxed{\ \ ア\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、文章中の下線部の内容を詳しく説明することで、
不等式②を示せ。
(4)(A),(B),(C)のうち、空欄$\boxed{\ \ イ\ \ }$に入る記号として最もふさわしいものを
1つ選び答えよ。また、不等式③を示せ。

2022九州大学理系過去問
この動画を見る 

気持ちいい別解あり!これ解ける?【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$を正の数とするとき、不等式
$2\left( -\frac{a+b}{2}-\sqrt{ab}\right)≦3\left(\frac{a+b+c}{2}-\sqrt[3]{abc}\right)$
を証明せよ。

また、等号が成立するのはどんな場合か。

京都大過去問
この動画を見る 

2022藤田医科大の簡単な問題 メインはn個の相加相乗平均の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x\gt 0$において$\dfrac{x}{2}+\dfrac{2}{x^2}$の最小値を求めよ.

2022藤田医科大過去問
この動画を見る 
PAGE TOP