大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限 - 質問解決D.B.(データベース)

大学入試問題数学#31 名古屋工業大学 改 (2020) 定積分と極限

問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。

出典:2020年名古屋工業大学 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ R \to \infty }\displaystyle \int_{0}^{R}e^{-\sqrt{ x }}dx$を求めよ。
$\displaystyle \lim_{ x \to \infty }xe^{-x}=0$は用いてよい。

出典:2020年名古屋工業大学 入試問題
投稿日:2021.10.10

<関連動画>

室蘭工業大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=\displaystyle \frac{1}{2}$ 一般項を求めよ

$a_{n+1}=\displaystyle \frac{(n+1)a_n}{n+3^na_n}$

出典:2018年蘭工業大学 過去問
この動画を見る 

4次方程式が2つの実数解しか持たないということは・・・【早稲田大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$a,b,c$は整数とする。四次方程式$x^4+ax^3+bx^2+cx+3=0$の実数解が1と3となるような$a$の最大値?で最小値は?である。

早稲田大過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題019〜東京工業大学2016年度理系数学第4問〜整数に関する論証

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
nを2以上の自然数とする。
(1)nが素数または4のとき、$(n-1)!$はnで割り切れないことを示せ。
(2)nが素数でなくかつ4でもないとき、$(n-1)!$はnで割り切れることを示せ。

2016東京工業大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年経済学部第5問〜指数対数の性質と格子点と2次関数の最大

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$aを2以上の整数、pを整数とし、$s=2^{2p+1}$とおく。実数$x,y$が等式
$2^{a+1}\log_23^x+2x\log_2(\frac{1}{3})^x=\log_s9^y$
を満たすとき、yをxの関数として表したものを$y=f(x)$とする。
(1)対数の記号を使わずに、$f(x)$を$a,p$およびxを用いて表せ。
(2)$a=2,\ p=0$とする。このとき、$n \leqq f(m)$を満たし、かつ、$m+n$が正となる
ような整数の組(m,n)の個数を求めよ。
(3)$y=f(x)(0 \leqq x \leqq 2^{a+1})$の最大値が$2^{3a}$以下となるような整数pの
最大値と最小値を、それぞれaを用いて表せ。

2022慶應義塾大学経済学部過去問
この動画を見る 

京都大 史上最短の入試問題 tan1°は有理数か 高校数学 Japanese university entrance exam questions Kyoto University

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
史上最短問題文 tan1°は有理数か?(京大入試)
この動画を見る 
PAGE TOP