【誘導あり 概要欄】大学入試問題#24 富山大学(2020) 微積の応用 - 質問解決D.B.(データベース)

【誘導あり 概要欄】大学入試問題#24 富山大学(2020) 微積の応用

問題文全文(内容文):
(1)
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$
$x\ \cos\theta-\sin\theta=0$のとき
$\sin\theta,\cos\theta$を$x$で表せ。

(2)
$x \gt 0$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x\ \cos\ t-\sin\ t|dt$の最小値を求めよ。

出典:2020年富山大学 入試問題
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: ますただ
問題文全文(内容文):
(1)
$0 \lt \theta \lt \displaystyle \frac{\pi}{2}$
$x\ \cos\theta-\sin\theta=0$のとき
$\sin\theta,\cos\theta$を$x$で表せ。

(2)
$x \gt 0$
$f(x)=\displaystyle \int_{0}^{\frac{\pi}{2}}|x\ \cos\ t-\sin\ t|dt$の最小値を求めよ。

出典:2020年富山大学 入試問題
投稿日:2021.10.02

<関連動画>

PAGE TOP