問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=3、\vec{ a }・\vec{ b }=-3$のとき、$P=| \vec{ a } + t \vec{ b } |$を最小にする実数tの値と、 そのときの最小値を求めよう。
②不等式$| \vec{ a } ・\vec{ b }| \leqq | \vec{ a } || \vec{ b } |$を証明しよう。
①$| \vec{ a } |=2,| \vec{ b } |=3、\vec{ a }・\vec{ b }=-3$のとき、$P=| \vec{ a } + t \vec{ b } |$を最小にする実数tの値と、 そのときの最小値を求めよう。
②不等式$| \vec{ a } ・\vec{ b }| \leqq | \vec{ a } || \vec{ b } |$を証明しよう。
単元:
#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
①$| \vec{ a } |=2,| \vec{ b } |=3、\vec{ a }・\vec{ b }=-3$のとき、$P=| \vec{ a } + t \vec{ b } |$を最小にする実数tの値と、 そのときの最小値を求めよう。
②不等式$| \vec{ a } ・\vec{ b }| \leqq | \vec{ a } || \vec{ b } |$を証明しよう。
①$| \vec{ a } |=2,| \vec{ b } |=3、\vec{ a }・\vec{ b }=-3$のとき、$P=| \vec{ a } + t \vec{ b } |$を最小にする実数tの値と、 そのときの最小値を求めよう。
②不等式$| \vec{ a } ・\vec{ b }| \leqq | \vec{ a } || \vec{ b } |$を証明しよう。
投稿日:2015.12.10





