【高校数学】 数Ⅱ-138 対数関数④・不等式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-138 対数関数④・不等式編

問題文全文(内容文):
◎次の不等式を解こう。

①$\log_3 x \lt \displaystyle \frac{3}{2}$

②$\log_{\frac{1}{3}}x \geqq 2$

③$\log_3(x+2) \lt 2$

④$\log_2(x+1)+\log_2(x-2) \geqq 2$

⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。

①$\log_3 x \lt \displaystyle \frac{3}{2}$

②$\log_{\frac{1}{3}}x \geqq 2$

③$\log_3(x+2) \lt 2$

④$\log_2(x+1)+\log_2(x-2) \geqq 2$

⑤$\log_{\frac{1}{2}}(x-1)+\log_{\frac{1}{2}}(x-2) \geqq -1$
投稿日:2015.09.27

<関連動画>

PAGE TOP