微分方程式 高専数学 p 100(1)(2) - 質問解決D.B.(データベース)

微分方程式 高専数学 p 100(1)(2)

問題文全文(内容文):
微分方程式
(1)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x+t}{t}$
(2)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x}{t}+e^\frac{x}{t}$
の一般解を求めよ。
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
微分方程式
(1)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x+t}{t}$
(2)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x}{t}+e^\frac{x}{t}$
の一般解を求めよ。
投稿日:2021.10.18

<関連動画>

福田の数学〜京都大学2023年理系第4問〜複雑な関数の最大値と最小値

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 次の関数f(x)の最大値と最小値を求めよ。
f(x)=$e^{-x^2}$+$\frac{1}{4}x^2$+1+$\frac{1}{e^{-x^2}+\frac{1}{4}x^2+1}$ (-1≦x≦1)
ただし、eは自然対数の底であり、その値はe=2.71...である。

2023京都大学理系過去問
この動画を見る 

【高校数学】数Ⅲ-91 微分(復習編)

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の関数を微分せよ。

①$y=x^4+x^3+x^2+x+1$

②$y=-2x^3+7x+4$

③$y=-\dfrac{3}{2}x^4+\dfrac{1}{3}x^3-5x$

④$y=(x^3-1)^2$

⑤関数$f(x)=\vert x(x-2) \vert $が$x=2$で
微分可能であるかどうかを調べよ。
この動画を見る 

福田の数学〜東北大学2023年文系第3問〜軸の動く最大最小

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東北大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ aを実数とし、2次関数f(x)=$x^2$+2$ax$-3 を考える。実数xがa≦x≦a+3 の範囲を動くときのf(x)の最大値および最小値を、それぞれM(a), m(a)とする。
以下の問いに答えよ。
(1)M(a)をaを用いて表せ。
(2)m(a)をaを用いて表せ。
(3)aがすべての実数を動くとき、m(a)の最小値を求めよ。

2023東北大学文系過去問
この動画を見る 

【数Ⅲ】【微分とその応用】不等式の応用4 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x→∞$のとき、$y=x$が$y=\log x$と比較して、
より急速に増大すること、すなわち

$\displaystyle \lim_{ x \to \infty } \displaystyle \frac{x}{\log x} =\infty$

が成り立つことを証明せよ。

ただし、まずは次の①~③のどれか1つを証明し、それを利用せよ。

①$x≧4$のとき、$x^2>\log x$が成り立つ
②$x≧4$のとき、$x>\log x$が成り立つ
③$x≧4$のとき、$\sqrt{x}>\log x$が成り立つ
この動画を見る 

福田の数学〜東京医科歯科大学2022年理系第2問〜放物線に反射する直線の方程式と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#微分法と積分法#点と直線#円と方程式#微分とその応用#積分とその応用#接線と法線・平均値の定理#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#面積、体積#数学(高校生)#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の放物線$P:y^2=4x$上に異なる2点A,Bをとり、A,Bそれぞれに
おいてPへの接線と直交する直線を$n_A,\ n_B$とする。aを正の数として、点Aの座標
を$(a,\ \sqrt{4a})$とするとき、以下の各問いに答えよ。
(1)$\ n_A$の方程式を求めよ。
(2)直線ABと直線$y=\sqrt{4a}$とがなす角の2等分線の一つが、$n_A$に一致する
とき、直線ABの方程式をaを用いて表せ。
(3)(2)のとき、点Bを通る直線$r_B$を考える。$r_B$と直線ABとがなす角の
2等分線の一つが、$n_B$に一致するとき、$r_B$の方程式をaを用いて表せ。
(4)(3)のとき、直線ABと放物線Pで囲まれた図形の面積をS_1とし、Pと直線\\
$y=\sqrt{4a}$、直線$x=-1$および(3)の$r_B$で囲まれた図形の面積を$S_2$とする。
aを変化させたとき、$\frac{S_1}{S_2}$の最大値を求めよ。

2022東京医科歯科大学理系過去問
この動画を見る 
PAGE TOP