微分方程式 高専数学 p 100(1)(2) - 質問解決D.B.(データベース)

微分方程式 高専数学 p 100(1)(2)

問題文全文(内容文):
微分方程式
(1)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x+t}{t}$
(2)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x}{t}+e^\frac{x}{t}$
の一般解を求めよ。
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: ますただ
問題文全文(内容文):
微分方程式
(1)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x+t}{t}$
(2)$\displaystyle \frac{dx}{dt}=\displaystyle \frac{x}{t}+e^\frac{x}{t}$
の一般解を求めよ。
投稿日:2021.10.18

<関連動画>

PAGE TOP