【高校数学】 数B-29 ベクトル方程式④ - 質問解決D.B.(データベース)

【高校数学】 数B-29 ベクトル方程式④

問題文全文(内容文):
定点$C(\vec{ c })$を中心とする半径rの円は①_________ と表され、 これを円のベクトル方程式という。ちなみに、2点$A(\vec{ a })$、$B(\vec{ b })$を直径の 両端とする円のベクトル方程式は② である。

次の円の方程式をベクトル方程式を利用して求めよう。

③点C(2,3)が中心で、点A(1.1)を通る円

④2点A(1,6)、B(3,0)を直径の両端とする円
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
定点$C(\vec{ c })$を中心とする半径rの円は①_________ と表され、 これを円のベクトル方程式という。ちなみに、2点$A(\vec{ a })$、$B(\vec{ b })$を直径の 両端とする円のベクトル方程式は② である。

次の円の方程式をベクトル方程式を利用して求めよう。

③点C(2,3)が中心で、点A(1.1)を通る円

④2点A(1,6)、B(3,0)を直径の両端とする円
投稿日:2015.12.21

<関連動画>

【高校数学】 数B-55 空間における平面・直線の方程式③

アイキャッチ画像
単元: #数Ⅱ#平面上のベクトル#図形と方程式#点と直線#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①直線$\ell:x=-1+t,y=3+t,z=1+2t$上に点$P$がある.
線分$OP$が最小となる点$P$の座標を求めよう.

②2点$A(3,1,4),B(1,2,-1)$を通る直線上に点のうちで,
原点に最も近い点の座標を求めよう.
この動画を見る 

数検準1級1次(3番 ベクトル)

単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{3}$ $\vert \overrightarrow{ a }\vert=\vert \overrightarrow{ b }\vert,\vert \overrightarrow{ c }\vert=1$
$\vert \overrightarrow{ a }\vert \perp \vert \overrightarrow{ b }\vert,\vert \overrightarrow{ b }\vert \perp \vert \overrightarrow{ c }\vert,\vert \overrightarrow{ c }\vert \perp \vert \overrightarrow{ a}\vert$のとき,

$\vert \overrightarrow{ x }\vert=\vert \overrightarrow{ a }\vert+2\vert \overrightarrow{ b }\vert+3\vert \overrightarrow{ c }\vert$
$\vert \overrightarrow{ y }\vert=3\vert \overrightarrow{ a }\vert+\vert \overrightarrow{ b }\vert-2\vert \overrightarrow{ c }\vert$
のなす角$\theta$に対して$\cos\theta$の値を求めよ.
この動画を見る 

【短時間でポイントチェック!!】ベクトルの平行〔現役講師解説、数学〕

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 3rd School
問題文全文(内容文):
ベクトルの平行を短時間で解くポイント解説動画です
----------------------------------------
次の2つのベクトル$\vec{ a },\vec{ b }$が平行になるように$x$の値を求めよ。

$\vec{ a }=(x,-2),\vec{ b }=(2,1)$


$\vec{ a }=(-9,x),\vec{ b }=(x,-1)$
この動画を見る 

【数C】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0
この動画を見る 

【高校数学】 数B-25 ベクトルと図形③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①△ABCにおいて、辺ABを3:2に内分する点をD、辺ACを2:1に内分する点をEとし、 線分BE、CDの交点をFとする。$\overrightarrow{ AB }=\vec{ b },\overrightarrow{ AC }=\vec{ c }$とするとき、$\overrightarrow{ AF }$を$\vec{ b },\vec{ c }$を用いて表そう。
この動画を見る 
PAGE TOP