福田の数学〜京都大学2024年理系第5問〜指数関数で囲まれた図形の面積と極限 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年理系第5問〜指数関数で囲まれた図形の面積と極限

問題文全文(内容文):
$\Large\boxed{5}$ $a$は$a$≧1を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$とする。
$x$≧0, $\frac{e^x-e^{-x}}{2}$≦$y$, $y$≦$\frac{e^x+e^{-x}}{2}$, $y$≦$a$
次の問いに答えよ。
(1)$D_a$の面積$S_a$を求めよ。
(2)$\displaystyle\lim_{a \to \infty}S_a$ を求めよ。
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a$は$a$≧1を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$とする。
$x$≧0, $\frac{e^x-e^{-x}}{2}$≦$y$, $y$≦$\frac{e^x+e^{-x}}{2}$, $y$≦$a$
次の問いに答えよ。
(1)$D_a$の面積$S_a$を求めよ。
(2)$\displaystyle\lim_{a \to \infty}S_a$ を求めよ。
投稿日:2024.03.10

<関連動画>

PAGE TOP