共通テスト2023「数学1A・2B」総評・感想。十分難しいです。【篠原好】 - 質問解決D.B.(データベース)

共通テスト2023「数学1A・2B」総評・感想。十分難しいです。【篠原好】

問題文全文(内容文):
共通テスト2023「数学」の総評・感想・レビューです。
単元: #大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2023「数学」の総評・感想・レビューです。
投稿日:2023.01.16

<関連動画>

福田の数学〜2023年共通テスト速報〜数学IA第3問場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第3問
番号によって区別された複数の球が、何本かのひもでつながれている。ただし、各ひもはその両端で二つの球をつなぐものとする。次の条件を満たす球の塗り分け方(以下、球の塗り方)を考える。
【条件】
・それぞれの球を、用意した5色(赤、青、黄、緑、紫)のうちのいずれか1色で塗る。
・1本のひもでつながれた二つの球は異なる色になるようにする。
・同じ色を何回使ってもよく、また使わない色があってもよい。
例えば図A(※動画参照)では、三つの球が2本のひもでつながれている。この三つの球を塗るとき、球1の塗り方が5通りあり、球1を塗った後、球2の塗り方は4通りあり、さらに球3の塗り方は4通りある。したがって、球の塗り方の総数は80である。
(1)図B(※動画参照)において、球の塗り方は$\boxed{\ \ アイウ\ \ }$通りある。
(2)図C(※動画参照)において、球の塗り方は$\boxed{\ \ エオ\ \ }$通りある。
(3)図D(※動画参照)における球の塗り方のうち、赤をちょうど2回使う塗り方は$\boxed{\ \ カキ\ \ }$通りある。
(4)図E(※動画参照)における球の塗り方のうち、赤をちょうど3回使い、かつ青をちょうど2回使う塗り方は$\boxed{\ \ クケ\ \ }$通りある。
(5)図Dにおいて、球の塗り方の総数を求める。
そのために、次の構想を立てる。
【構想】
図Dと図Fを比較する。

図Fでは球3と球4が同色になる球の塗り方が可能であるため、図Dよりも図Fの球の塗り方の総数の方が大きい。
図Fにおける球の塗り方は、図Bにおける球の塗り方と同じであるため、全部で$\boxed{\ \ アイウ\ \ }$通りある。そのうち球3と球4が同色になる球の塗り方の総数と一致する図として、後の⓪~④のうち、正しいものは$\boxed{\boxed{\ \ コ\ \ }}$である。したがって、図Dにおける球の塗り方は$\boxed{\ \ サシス\ \ }$通りある。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
(解答群は動画参照)
(6)図Gにおいて、球の塗り方は$\boxed{\ \ セソタチ\ \ }$通りある。

2023共通テスト過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第4問数列〜複利計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#大学入試解答速報#数学#共通テスト#数B
指導講師: 福田次郎
問題文全文(内容文):
第4問
花子さんは、毎年の初めに預金口座に一定額の入金をすることにした。この入金を始める前における花子さんの預金は10万円である。ここで、預金とは預金口座にあるお金の額のことである。預金には年利1%で利息がつき、ある年の初めの預金がx万円であれば、その年の終わりには預金は1.01x万円となる。次の年の初めには1.01x万円に入金額を加えたものが預金となる。
毎年の初めの入金額をp万円とし、n年目の初めの預金を$a_n$万円とおく。ただし、p>0とし、nは自然数とする。
例えば、$a_1=10+p, a_2=1.01(10+p)+p$である。
(1)$a_n$を求めるために二つの方針で考える。
方針1
n年目の初めの預金と(n+1)年目の初めの預金との関係に着目して考える。
3年目の初めの預金$a_3$万円について、$a_3=\boxed{\boxed{\ \ ア\ \ }}$である。全ての自然数nについて
$a_{n+1}=\boxed{\boxed{\ \ イ\ \ }}a_n+\boxed{\boxed{\ \ ウ\ \ }}$
が成り立つ。これは
$a_{n+1}+\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}(a_n+\boxed{\boxed{\ \ エ\ \ }})$
と変形でき、$a_n$を求めることができる。

$\boxed{\boxed{\ \ ア\ \ }}$の解答群
⓪1.01{1.01(10+p)+p} ①1.01{1.01(10+p)+1.01p} 
②1.01{1.01(10+p)+p}+p ③1.01{1.01(10+p)+p}+1.01p 
④1.01(10+p)+1.01p ⑤1.01(10+1.01p)+1.01p

$\boxed{\boxed{\ \ イ\ \ }}$~$\boxed{\boxed{\ \ オ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪1.01 ①$1.01^{n-1}$ ②$1.01^n$ 
③p ④100p ⑤np
⑥100np ⑦$1.01^{n-1}$×100p ⑧$1.01^n$×100p 
方針2
もともと預金口座にあった10万円と毎年の初めに入金したp万円について、n年目の初めにそれぞれがいくらになるかに着目して考える。
もともと預金口座にあった10万円は、2年目の初めには10×1.01万円になり、3年目の初めには10×$1.01^2$万円になる。同様に考えるとn年目の初めには10×$1.01^{n-1}$万円になる。
・1年目の初めに入金したp万円は、n年目の初めにはp×$1.01^{\boxed{\boxed{カ}}}$万円になる。
・2年目の初めに入金したp万円は、n年目の初めにはp×$1.01^{\boxed{\boxed{キ}}}$万円になる。
・n年目の初めに入金したp万円は、n年目の初めにはp万円のままである。
これより
$a_n$=10×$1.01^{n-1}$+p×$1.01^{\boxed{\boxed{カ}}}$+p×$1.01^{\boxed{\boxed{キ}}}$+...+p
=10×$1.01^{n-1}$+p$\displaystyle\sum_{k=1}^n1.01^{\boxed{\boxed{ク}}}$
となることがわかる。ここで、$\displaystyle\sum_{k=1}^n1.01^{\boxed{\boxed{ク}}}$=$\boxed{\boxed{ \ \ ケ\ \ }}$となるので、$a_n$を求めることができる。
$\boxed{\boxed{ \ \ ケ\ \ }}$, $\boxed{\boxed{ \ \ キ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪n+1 ①n ②n-1 ③n-2
$\boxed{\boxed{ \ \ ク\ \ }}$の解答群
⓪k+1 ①k ②k-1 ③k-2
$\boxed{\boxed{ \ \ ケ\ \ }}$の解答群
⓪100×$1.01^n$ ①100($1.01^n$-1) 
②100($1.01^{n-1}-1$) ③n+$1.01^{n-1}$-1 
④0.01(101n-1) ⑤$\frac{n×1.01^{n-1}}{2}$
(2)花子さんは、10年目の終わりの預金が30万円以上になるための入金額について考えた。
10年目の終わりの預金が30万円以上であることを不等式を用いて表すと
$\boxed{\boxed{\ \ コ\ \ }}$≧30となる。この不等式をpについて解くと
p≧$\frac{\boxed{\ \ サシ\ \ }-\boxed{\ \ スセ\ \ }×1.01^{10}}{101(1.01^{10}-1)}$
となる。したがって、毎年の初めの入金額が例えば18000円であれば、10年目の終わりの預金が30万円以上になることがわかる。
$\boxed{\boxed{\ \ コ\ \ }}$の解答群
⓪$a_{10}$ ①$a_{10}$+p ②$a_{10}$-p 
③1.01$a_{10}$ ④1.01$a_{10}$+p ⑤1.01$a_{10}$-p
(3)1年目の入金を始める前における花子さんの預金が10万円ではなく、13万円の場合を考える。すべての自然数nに対して、この場合のn年目の初めの預金は$a_n$万円よりも$\boxed{\boxed{\ \ ソ\ \ }}$万円多い。なお、年利は1%であり、毎年の初めの入金額はp万円のままである。
$\boxed{\boxed{\ \ ソ\ \ }}$の解答群
⓪3 ①13 ②3(n-1) 
③3n ④13(n-1) ⑤13n 
⑥$3^n$ ⑦3+1.01(n-1) ⑧3×$1.01^{n-1}$ 
⑨3×$1.01^n$ ⓐ13×$1.01^{n-1}$ ⓑ13×$1.01^n$ 

2023共通テスト過去問
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試Ⅲ第2問(1)〜楕円と複素数平面

アイキャッチ画像
単元: #平面上の曲線#複素数平面#図形と計量#三角比(三角比・拡張・相互関係・単位円)#2次曲線#複素数平面#大学入試解答速報#数学#明治大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)\ 座標平面において、点(-1,\ 0)からの距離と点(1,\ 0)からの距離の和が4\\
である点は方程式\frac{x^2}{\boxed{\ \ ア\ \ }}+\frac{y^2}{\boxed{\ \ イ\ \ }}=1\ で表される曲線C上にある。点(x,\ y)\\
が曲線C上を動くとき、点(x,\ y)と点(-1,\ 0)の距離をdとおけば、dの最小値\\
は\ \boxed{\ \ ウ\ \ }、最大値は\ \boxed{\ \ エ\ \ }\ となる。複素数zが|z|+|z-4|=8を満たすとき、\\
|z|のとりうる範囲は\ \boxed{\ \ オ\ \ } \leqq |z| \leqq \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021明治大学全統過去問
この動画を見る 

【日本最速解答速報】共通テスト2023数学1A 第3問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学1A 第3問解説していきます.
この動画を見る 

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
この動画を見る 
PAGE TOP