大学入試問題#28 東海大学医学部(2021) 極限 - 質問解決D.B.(データベース)

大学入試問題#28 東海大学医学部(2021) 極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{1}{x-2}(\displaystyle \int_{0}^{x}x^4e^{2t}dt-\displaystyle \int_{0}^{2}16e^{2t}dt)$を求めよ。

出典:2021年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{1}{x-2}(\displaystyle \int_{0}^{x}x^4e^{2t}dt-\displaystyle \int_{0}^{2}16e^{2t}dt)$を求めよ。

出典:2021年東海大学医学部 入試問題
投稿日:2021.10.07

<関連動画>

福田の数学〜慶應義塾大学2021年薬学部第1問(5)〜n進法と等比数列

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(5)3進法で表された3n桁の整数
$\overbrace{ 210210\cdots210_{(3)}}^{ 3n桁 }$
がある(ただし、nは自然数とする)。この数は、$1 \leqq k \leqq n$を満たす全て
の自然数$k$に対して、最小の位から数えて3k番目の位の数が$2、3k-1$番目の位
の数が$1、3k-2$番目の位の数が0である。この数を10進法で表した数を$a_n$
とおく。
$(\textrm{i})a_2=\boxed{\ \ ク\ \ }$である。

2021慶應義塾大学薬学部過去問
$(\textrm{ii})a_n$をnの式で表すと、$\boxed{\ \ ケ\ \ }$である。
この動画を見る 

【慶應文学部あめりあてゃ】1浪2留の末についに進級!

アイキャッチ画像
単元: #大学入試過去問(数学)#化学#学校別大学入試過去問解説(数学)#大学入試過去問(化学)#英語(高校生)#大学入試過去問(英語)#学校別大学入試過去問解説(英語)#慶應義塾大学#数学(高校生)#理科(高校生)#慶應義塾大学#慶應義塾大学#小論文(高校生)#慶應義塾大学
指導講師: Morite2 English Channel
問題文全文(内容文):
藤川天を置き去りにした衝撃展開!**慶應文学部「あめりあてゃ」**のヤバすぎる大学生活が暴露されたぞ。

1浪2留(1年生を3回!)の末、ついに**「仮進級」**を勝ち取ったあめりあてゃ。しかし、喜びの裏には地獄があった!

* **慶應文学部は1年から2年への進級が鬼ムズ**。
* 彼女は語学を2つ(フランス語とドイツ語)も取っていたという**「バカじゃないの」な選択**をしていた。そのうち1科目ずつ落としたため、「仮進級」扱いとなった。
* しかも彼女、GPAは**「0.5」**という信じられない低さ!視力並みに悪いGPAで、人気の「美学美術」(ビビ)への進学は断念。
* 第一志望のビビへの発表を駅の改札で見て、**泣き叫んだ**というエピソードも。
* 結局、第二希望の**西洋史学**に進むことに。

さらに彼女は、**アイドル活動を半年で解散**していたことも判明。すぐに問題が起こり、揉めて解散したらしい。

そして衝撃の事実!彼女は3年間も慶應にいるのに、**三田キャンパスに一度も行ったことがない**というから驚きだ。

次なる目標は**ミスコン出場**!モリテツチャンネル出身者はミスコン・ミスターコン率100%のため、ぜひ出場してほしいと先生たちから強く勧められているぞ。

そして動画のラストには、合格祝いとしてモリテツ先生と**サンリオピューロランドに行く約束**が浮上!ピューロランド編が爆誕する可能性も出てきたぞ。
この動画を見る 

福田の数学〜明治大学2022年理工学部第1問(3)〜接線の本数と接点の個数

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#接線と法線・平均値の定理#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
(3)$f(x)=(\log x)^2+2\log x+3$として、座標平面上の曲線$y=f(x)$を$C$とする。
ただし、$\log x$は$x$の自然対数を表し、$e$を自然対数の底とする。
$(\textrm{a})$関数$f(x)$は$x=\frac{\boxed{ソ}}{e}$のとき最小値$\boxed{タ}$をとる。
$(\textrm{b})$曲線Cの変曲点の座標は$(\boxed{チ},\ \boxed{ツ})$である。
$(\textrm{c})$直線$y=\boxed{ツ}$と曲線Cで囲まれた図形の面積は
$\frac{\boxed{テ}}{e^2}$である。
$(\textrm{d})a$を実数とする。曲線$C$の接線で、点$(0,\ a)$を通るものがちょうど1本あるとき、
aの値は$\boxed{ト}$である。
$(\textrm{e})b$を実数とする。曲線Cの2本の接線が点$(0,\ b)$で垂直に交わるとき、
bの値は$\frac{\boxed{ナ}}{\boxed{ニ}}$である。

2022明治大学理工学部過去問
この動画を見る 

大学入試問題#144 東京理科大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a}\displaystyle \frac{dx}{e^x+4e^{-x}+5}=log\sqrt[ 3 ]{ 2 }$が成り立つとき$a$の値を求めよ。

出典:2006年東京理科大学 入試問題
この動画を見る 

静岡大 数学的帰納法 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#数列#数学的帰納法#静岡大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
静岡大学過去問題
n自然数
(1)$4^{n+1}+5^{2n-1}$は21で割り切れることを証明
(2)次の条件を満たす定数でない多項式f(x)を推定し、その推定が正しいことを証明せよ。
(a)f(4)=21
(b)すべての自然数nに対し$x^{n+1}+(x+1)^{2n-1}$はf(x)で割り切れる。
この動画を見る 
PAGE TOP