大学入試問題#28 東海大学医学部(2021) 極限 - 質問解決D.B.(データベース)

大学入試問題#28 東海大学医学部(2021) 極限

問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{1}{x-2}(\displaystyle \int_{0}^{x}x^4e^{2t}dt-\displaystyle \int_{0}^{2}16e^{2t}dt)$を求めよ。

出典:2021年東海大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ x \to 2 }\displaystyle \frac{1}{x-2}(\displaystyle \int_{0}^{x}x^4e^{2t}dt-\displaystyle \int_{0}^{2}16e^{2t}dt)$を求めよ。

出典:2021年東海大学医学部 入試問題
投稿日:2021.10.07

<関連動画>

難問整数問題!大事なのは指数の感覚!?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ 6・3^{3x}+1=7・5^{2x}$を満たす$0$以上の整数$x$をすべて求めよ。

一橋大過去問
この動画を見る 

福田の数学〜青山学院大学2023年理工学部第5問〜定積分で定義された数列と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#関数と極限#積分とその応用#数列の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a_n$=$\displaystyle\frac{1}{n!}\int_1^e(\log x)^ndx$ ($n$=1,2,3,...)とおく。
(1)$a_1$を求めよ。
(2)不等式0≦$a_n$≦$\frac{e-1}{n!}$ が成り立つことを示せ。
(3)$n$≧2のとき、$a_n$=$\displaystyle\frac{e}{n!}$-$a_{n-1}$ であることを示せ。
(4)$\displaystyle\lim_{n \to \infty}\sum_{k=2}^n\frac{(-1)^k}{k!}$ を求めよ。
この動画を見る 

大学入試問題#698「基本問題」 昭和大医学部(2005) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#昭和大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{x-10}{x^2+x-12} dx$

出典:2005年昭和大学医学部 入試問題
この動画を見る 

福田の数学〜京都大学2024年理系第5問〜指数関数で囲まれた図形の面積と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $a$は$a$≧1を満たす定数とする。座標平面上で、次の4つの不等式が表す領域を$D_a$とする。
$x$≧0, $\frac{e^x-e^{-x}}{2}$≦$y$, $y$≦$\frac{e^x+e^{-x}}{2}$, $y$≦$a$
次の問いに答えよ。
(1)$D_a$の面積$S_a$を求めよ。
(2)$\displaystyle\lim_{a \to \infty}S_a$ を求めよ。
この動画を見る 

大学入試問題#381「ストック0でPC破損との闘い」 愛知工業大学2011 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#愛知工業大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{2} \displaystyle \frac{x^3+3x}{x^2+1} dx$

出典:2011年愛知工業大学 入試問題
この動画を見る 
PAGE TOP