【文系も理系も必見】今から理系科目で100点伸ばす授業動画はこれです! - 質問解決D.B.(データベース)

【文系も理系も必見】今から理系科目で100点伸ばす授業動画はこれです!

問題文全文(内容文):
【文系/理系】今から理系科目で100点伸ばす授業動画紹介動画です
単元: #大学入試解答速報#数学#共通テスト#化学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【文系/理系】今から理系科目で100点伸ばす授業動画紹介動画です
投稿日:2023.12.16

<関連動画>

【解答速報・全問解説】2025年 大学入学共通テスト 数学ⅡBC解答速報

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2025年1月19日(日)に実施された、2025年大学入学共通テストの数学ⅡBCの解答速報です。(LIVEで行った解答速報の抜粋版です)
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。

指導講師:AKIYAMA、理数大明神、烈's study!、ゆう☆たろう
この動画を見る 

YouTuberたちから受験生への応援メッセージ2025

アイキャッチ画像
単元: #大学入試解答速報#数学#共通テスト#英語#化学#物理#共通テスト#共通テスト#共通テスト#世界史#共通テスト
指導講師: Morite2 English Channel
問題文全文(内容文):
【受験生、泣くな】試験直前、メンタル崩壊寸前のキミに贈る言葉が胸に刺さりすぎた…。

・「どうせ無理だ…」って思うな!今まで頑張ってきた自分を信じろ!
・試験当日は絶対焦るから「焦るのが普通」って思っとけ。焦ってる自分に焦るな。
・緊張したら「うわ、俺めっちゃ緊張してるw」って客観的に自分を見てみろ。なんか面白くなって緊張ほぐれるらしいぞ。
・どうしても無理って思ったら、視点を変えてみ。数学の問題も、人生も、離れて見ると意外な答えが見つかるかも。
・これまでやってきた勉強と参考書は裏切らない。努力してきた自分を信じて、全力出すだけ。
・失敗を恐れるな。「ダメかも」って思う気持ちが、一番の敵だから。

今までマジでお疲れ様。この動画見てる暇あったら英単語の一つでも覚えな!っていう先生もいるけど、最後は気持ちの問題。

自分を信じて、行ってこい!応援してるぞ!
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第5問図形の性質〜作図によって描いた図形の性質

アイキャッチ画像
単元: #数A#図形の性質#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
【第5問】
(1) 円Oに対して、次の手順1で作図を行う。
[手順1]
(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。円Oと直線lとの交点をA, Bとし、線分ABの中点Cをとる。
(Step 2) 円Oの周上に、点Dを$\angle COD$が鈍角となるようにとる。直線CDを引き、円Oとの交点でDとは異なる点をEとする。
(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点をFとし、円Oとの交点でDとは異なる点をGとする。
(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。このことは、次の構想に基づいて、後のように説明できる。
[構想]
直線EHが円Oの接線であることを証明するためには、$\angle OEH=\boxed{\ \ アイ\ \ }°$であることを示せばよい。
手順1の(Step 1)と(Step 4)により、4点C, G, H, $\boxed{\boxed{\ \ ウ\ \ }}$は同一円周上にあることがわかる。よって、$\angle CHG=\boxed{\boxed{\ \ エ\ \ }}$である。一方、点Eは円Oの周上にあることから、$\boxed{\boxed{\ \ エ\ \ }}=\boxed{\boxed{\ \ オ\ \ }}$がわかる。よって、$\angle CHG=\boxed{\boxed{\ \ オ\ \ }}$であるので、4点C, G, H, $\boxed{\boxed{\ \ カ\ \ }}$は同一円周上にある。この円が点$\boxed{\boxed{\ \ ウ\ \ }}$を通ることにより、$\angle OEH=\boxed{\ \ アイ\ \ }°$を示すことができる。

$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪B ①D ②F ③O
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪$\angle AFC$ ①$\angle CDF$ ②$\angle CGH$ ③$\angle CBO$ ④$\angle FOG$
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪$\angle AED$ ①$\angle ADE$ ②$\angle BOE$ ③$\angle DEG$ ④$\angle EOH$
$\boxed{\boxed{\ \ カ\ \ }}$の解答群
⓪A ①D ②E ③F
(2) 円Oに対して、(1)の手順1とは直線lの引き方を変え、次の手順2で作図を行う。
[手順2]
(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに垂直な直線を引き、直線lとの交点をPとする。
(Step 2) 円Oの周上に、点Qを$\angle POQ$が鈍角となるようにとる。直線PQを引き、円Oとの交点でQとは異なる点をRとする。
(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQとは異なる点をSとする。
(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。
このとき、$\angle PTS=\boxed{\boxed{\ \ キ\ \ }}$である。
円Oの半径が$\sqrt 5$で、OT=$3\sqrt 6$であったとすると、3点O, P, Rを通る円の半径は$\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}}{\boxed{\ \ コ\ \ }}$であり、RT=$\boxed{\ \ サ\ \ }$である。
$\boxed{\boxed{\ \ キ\ \ }}$の解答群
⓪$\angle PQS$ ①$\angle PST$ ②$\angle QPS$ ③$\angle QRS$ ④$\angle SRT$

2023共通テスト過去問
この動画を見る 

共通テスト_ボーダーどうなるの?【概要欄必読】

アイキャッチ画像
単元: #大学入試解答速報#数学#共通テスト#英語#化学#物理#共通テスト#共通テスト#共通テスト#世界史#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
共通テスト_ボーダーがどのぐらいになるか。解説動画です
この動画を見る 

【全問解説】2026年 大学入学共通テスト 数学IA解答速報

アイキャッチ画像
単元: #大学入試解答速報#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
こちらの動画は、2026年1月18日(日)に実施された、2026年大学入学共通テストの数学IAの全問解説です。
当チャンネル講師が独自に行っている解説なので、解答の誤りなどがある場合がございます。その場合はご了承ください。必ず公式に発表される解答をご確認ください。
この動画を見る 
PAGE TOP