福田の数学〜北海道大学2024年理系第3問〜関数方程式の解 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2024年理系第3問〜関数方程式の解

問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問いに答えよ。
(1)$\alpha$ を実数とする。次のように定められた数列$\left\{a_n\right\}$ の一般項を求めよ。
$a_1$=$\alpha$, $a_{n+1}$=$\frac{1}{2}a_n$+1 ($n$=1,2,3,...)
(2)関数$f_1(x)$, $f_2(x)$, $f_3(x)$,... を次の関係式で定める。
$f_1(x)$=$3x$
$f_{n+1}(x)$=$(n+2)x^{n+1}$+$\displaystyle\left(\int_0^1f_n(t)dt\right)x$ ($n$=1,2,3,...)
関数$f_n(x)$を$x$と$n$の式で表せ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 次の問いに答えよ。
(1)$\alpha$ を実数とする。次のように定められた数列$\left\{a_n\right\}$ の一般項を求めよ。
$a_1$=$\alpha$, $a_{n+1}$=$\frac{1}{2}a_n$+1 ($n$=1,2,3,...)
(2)関数$f_1(x)$, $f_2(x)$, $f_3(x)$,... を次の関係式で定める。
$f_1(x)$=$3x$
$f_{n+1}(x)$=$(n+2)x^{n+1}$+$\displaystyle\left(\int_0^1f_n(t)dt\right)x$ ($n$=1,2,3,...)
関数$f_n(x)$を$x$と$n$の式で表せ。
投稿日:2024.04.10

<関連動画>

大学入試問題#616「これは理系が解くと逆にはまるかも」 名古屋大学(1963)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#名古屋大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$x \gt y$とする
$x+y=6,\ xy=4$のとき
$\displaystyle \frac{\sqrt{ x }-\sqrt{ y }}{\sqrt{ x }+\sqrt{ y }}$の値を求めよ。

出典:1963年名古屋大学 入試問題
この動画を見る 

大学入試問題#806「The 良問!」 兵庫県立大学中期(2014) #微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#兵庫県立大学
指導講師: ますただ
問題文全文(内容文):
微分可能な関数$f(x)$が
$f(x)=\displaystyle \int_{0}^{x} \sqrt{ f(t)^2+1 }\ dt$を満たすとする。
このとき以下の問いに答えよ。
1.$f'(x)$と$f''(x)$を$f(x)$で表せ。
2.関数$log(f(x)+f'(x))$を求めよ。
3.$f(x)$を求めよ。

出典:2014年兵庫県立大学中期 入試問題
この動画を見る 

お茶の水女子大 2次方程式 訂正版

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a \neq 1$
$3(a-1)x^2+6x-a-2=0$は0と1の間に少なくとも1つの解をもつことを示せ

出典:1988年お茶の水女子大学 過去問訂正版
この動画を見る 

大学入試問題#163 信州大学(2004) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2}\displaystyle \frac{log\ x}{x^3}\ dx$

出典:2004年信州大学 入試問題
この動画を見る 

東工大 整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3以上の奇数
$a_n=\displaystyle \frac{1}{6}\displaystyle \sum_{k=1}^{n-1}(k-1)k(k+1)$

$b_n=\displaystyle \frac{n^2-1}{8}$

(1)
$a_n,b_n$は整数

(2)
$a_n-b_n$は4の倍数

出典:2014年東京工業大学 過去問
この動画を見る 
PAGE TOP