数学「大学入試良問集」【19−10 指数関数の微分と面積の最大最小】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−10 指数関数の微分と面積の最大最小】を宇宙一わかりやすく

問題文全文(内容文):
定数$a(1 \lt a \lt 2)$に対して、曲線$y=a^x$上の点$(t,a^t)(0 \leqq t \leqq 1)$における接線を$l$とする。
次の問いに答えよ。

(1)
接線$l$の方程式を求めよ。
また、$l$と$y$軸の交点を$(0,b(t))$とし、$b(t)$の最小値を$a$で表せ。

(2)
接線$l$と$x$軸および2直線$x=0,x=1$で囲まれた台形の面積$S(t)$を求めよ。

(3)
$S(t)$の最大値を$a$で表せ。

(4)
$S(t)$の最小値を$a$で表せ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#同志社大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
定数$a(1 \lt a \lt 2)$に対して、曲線$y=a^x$上の点$(t,a^t)(0 \leqq t \leqq 1)$における接線を$l$とする。
次の問いに答えよ。

(1)
接線$l$の方程式を求めよ。
また、$l$と$y$軸の交点を$(0,b(t))$とし、$b(t)$の最小値を$a$で表せ。

(2)
接線$l$と$x$軸および2直線$x=0,x=1$で囲まれた台形の面積$S(t)$を求めよ。

(3)
$S(t)$の最大値を$a$で表せ。

(4)
$S(t)$の最小値を$a$で表せ。
投稿日:2021.09.09

<関連動画>

大学入試問題#161 大阪市立大学(1999) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#大阪市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{2}}(\displaystyle \frac{x\ \sin\ x}{1+\cos\ x}+\displaystyle \frac{x\ \cos\ x}{1+\sin\ x})dx$を計算せよ。

出典:1999年大阪市立大学 入試問題
この動画を見る 

大学入試問題#590「見た目以上に難しめ」 横浜市立大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \displaystyle \frac{\cos^2\ x}{\sin^3\ x} dx$

出典:2020年横浜市立大学医理学部 入試問題
この動画を見る 

【高校数学】毎日積分13日目【難易度:★★】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^1log\frac{x+2}{x+1}dx$
これを解け.
この動画を見る 

【数Ⅲ】積分法の応用:体積

アイキャッチ画像
単元: #積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
曲線$C:y=ax^2$ と直線 $\ell:y=bx$とで囲まれた図形をDとする。(a,bを正の定数とする)
Dを $\ell$のまわりに1回転してできる立体の体積Vを求めよ。
この動画を見る 

大学入試問題#184 早稲田大学 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{4}^{16}\sqrt{ x }\ e^{-\sqrt{ x }}dx$を計算せよ

出典:早稲田大学 入試問題
この動画を見る 
PAGE TOP