数学「大学入試良問集」【19−14 サイクロイドと接線・面積】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【19−14 サイクロイドと接線・面積】を宇宙一わかりやすく

問題文全文(内容文):
サイクロイド$x=\theta-\sin\theta,y=1-\cos\theta(0 \leqq \theta \leqq 2\pi)$
次の各問いに答えよ。

(1)$C$上の点$\lbrack \displaystyle \frac{\pi}{2}-1,1 \rbrack$における接線$l$の方程式を求めよ。
(2)接線$l$と$y$軸および$C$で囲まれた部分の面積を求めよ。
単元: #大学入試過去問(数学)#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#武蔵工業大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
サイクロイド$x=\theta-\sin\theta,y=1-\cos\theta(0 \leqq \theta \leqq 2\pi)$
次の各問いに答えよ。

(1)$C$上の点$\lbrack \displaystyle \frac{\pi}{2}-1,1 \rbrack$における接線$l$の方程式を求めよ。
(2)接線$l$と$y$軸および$C$で囲まれた部分の面積を求めよ。
投稿日:2021.09.14

<関連動画>

大学入試問題#124 高知大学(2020) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}\ dx$を計算せよ。

出典:2020年高知大学 入試問題
この動画を見る 

福田のおもしろ数学548〜無理関数の不定積分

アイキャッチ画像
単元: #関数と極限#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#不定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

不定積分$I=\displaystyle \int \sqrt{x^2-1}dx \ (x\gt 1)$を

$x=\dfrac{1}{\cos\theta}$と

置き換えて求めて下さい。
    
この動画を見る 

福田のわかった数学〜高校3年生理系107〜変化率(2)水の問題(1)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(2) 水の問題(1)
$y=x^2$ をy軸の周りに回転させてできる容器に、
毎秒$1cm^3$の割合で水を入れる。水面の半径が
3cmになったときの水面の上昇速度と水面の面積の増加速度を求めよ。
この動画を見る 

大学入試問題#223 宮崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^3+3x^2}{x^2+3x+2}\ dx$

出典:2015年宮崎大学 入試問題
この動画を見る 

福田の数学〜東北大学2024年理系第6問〜円錐の側面と平面の交わりの曲線

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{6}}$ $xyz$空間内の$xy$平面上にある円C:$x^2$+$y^2$=1および円盤D:$x^2$+$y^2$≦1を考える。Dを底面とし点P(0,0,1)を頂点とする円錐をKとする。A(0,-1,0), B(0,1,0)とする。$xyz$空間内の平面H:$z$=$x$を考える。すなわち、Hは$xz$平面上の直線$z$=$x$と線分ABをともに含む平面である。Kの側面とHの交わりとしてできる曲線をEとする。$-\frac{\pi}{2}$≦$\theta$≦$\frac{\pi}{2}$を満たす実数$\theta$に対し、円C上の点Q($\cos\theta$,$\sin\theta$,0)をとり、線分PQとEの共有点をRとする。
(1)線分PRの長さを$r(\theta)$とおく。$r(\theta)$を$\theta$を用いて表せ。
(2)円錐Kの側面のうち、曲線Eの点Aから点Rまでを結ぶ部分、線分PA、および線分PRにより囲まれた部分の面積を$S(\theta)$とおく。$\theta$と実数$h$が条件0≦$\theta$<$\theta$+$h$≦$\frac{\pi}{2}$ を満たすとき、次の不等式が成り立つことを示せ。
$\frac{h\left\{r(\theta)\right\}^2}{2\sqrt 2}$≦$S(\theta+h)-S(\theta)$≦$\frac{h\left\{r(\theta+h)\right\}^2}{2\sqrt 2}$
(3)円錐Kの側面のうち、円Cの$x$≧0の部分と曲線Eにより囲まれた部分の面積をTとおく。Tを求めよ。必要であれば$\tan\frac{\theta}{2}$=$uとおく置換積分を用いてもよい。
この動画を見る 
PAGE TOP