福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想 - 質問解決D.B.(データベース)

福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想

問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。

$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$ 
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$ 
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$

(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。

[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後 
③45日後 ④50日後 ⑤55日後 
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。

2023共通テスト過去問
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。

$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$ 
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$ 
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$

(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。

[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後 
③45日後 ④50日後 ⑤55日後 
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。

2023共通テスト過去問
投稿日:2023.02.02

<関連動画>

【篠原共通塾】2023年度「数学2B」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2023年度共通テスト「数学2B」の解説動画です。
この動画を見る 

2024年共通テスト解答速報〜数学ⅠA第4問整数の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
T 3 、 T 4 、 T 6 を次のようなタイマ ー とする。
T3 : 3 進数を 3 桁表示するタイマ ー
T4 : 4 進数を 3 桁表示するタイマ ー
T 6 : 6 進数を 3 裄表示するタイマ ー
なお、第進数とは進法で表された数のことである。これらのタイマ ー は.すべて次の表示方法に従うものとする。
表示方法
(a) スタ ー トした時点でタイマ ー は 000 と表示されている。
(b)タイマ ー は、スタ ー トした後、表示される数が1秒ごとに1ずつ増えていき、3 析で表示できる最大の数が表示された1秒後に.表示が000に戻る。
(c)タイマ ー は表示が 000 に戻った後も(b )と同様に表示される数が 1秒ごとに1ずつ増えていき、3 裄で表示できる最大の数が表示された1秒後に、表示が 000 に戻るという動作を繰り返す。
例えば、 T3 はスタ ー トしてから 3 進数でに$12_{ (3) }$秒後に012 と表示される。その後 222 と表示された1秒後に表示が000に戻り、その$12_{ (3) }$秒後に再び012と表示される。
( 1 ) T6 は、スタ ー トしてから 10 進数で 40 秒後にアイウと表示される。T4 は、スタ ー トしてから 2 進数で$10011_{ (2) }$秒後にエオカと表示される。
( 2 ) T 4 をスタ ー トさせた後、初めて表示が 000 に戻るのは、スタ ー トしてから10 進数でキク秒後であり、その後もキク秒ごとに表示が 000 に戻る。同様の考察を T 6 に対しても行うことにより、 T 4 と T 6 を同時にスタートさせた後、初めて両方の表示が同時に 000 に戻るのは.スタ ー トしてから 10 進でケコサシ秒後であることがわかる。
( 3 ) 0 以上の整数$\ell$に対して、T 4 をスタ ー トさせた$\ell$秒後に T4 が 012と表示されることと
$\ell$をスセで割った余りがソであることは同値である。ただしスセとソは10進法で表されているものとする。T3 についても同様の考察を行うことにより、次のことがわかる。T3 と T4 を同時にスタ ー トさせてから、初めて両方が同時に 012 と表示されるまでの時間をm秒とするとき、mは 10 進法でタチツと表される。
また、 T4とT6 の表示に関する記述として.次の0~3のうち、正しいものはテである。
0 T4 と T6 を同時にスタ ー トさせてから、m秒後より前に初めて両方が同時に 012 と表示される。
1 T4 と T6 を同時にスタ ー トさせてから、ちょうどm秒後に初めて両方が同時に 0 と表示される。
2 T4 と T6 を同時にスタ ー トさせてから、m秒後より後に初めて両方が同時に 012 と表示される。
3 T4 と T6 を同時にスタ一トさせてから、両方が同時に 012 と表示されることはない。

2024共通テスト過去問
この動画を見る 

東大芸人TAWASHIの共通テスト模試結果発表

アイキャッチ画像
単元: #社会(高校生)#日本史#世界史#大学入試過去問・共通テスト・模試関連#大学入試過去問・共通テスト・模試関連#数学#共通テスト#英語#化学#物理#共通テスト#共通テスト#共通テスト
指導講師: Morite2 English Channel
問題文全文(内容文):
東大受験芸人のTAWASHIさんが共通テスト全教科を解いた後に、結果発表をします。

果たして何点取れたのでしょうか!
この動画を見る 

【共テ数学IA】知らなきゃ損な裏技集__これで解答時間をキュッと短縮します(二次関数、命題と集合、整数の性質、確率、図形)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト数学IA】裏技集紹介動画です(二次関数、命題と集合、整数の性質、確率、図形)
$y=5x^2-21x+30=5(x ???)^2$

$(4x+1)(2x-5)=???$

$6x^2-11x-35=(???)(???)$
この動画を見る 

2024年共通テスト徹底解説〜数学ⅡB第1問(1)対数関数〜福田の入試問題解説

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
共通テスト2024の数学ⅡB第1問(1)対数関数を徹底解説します

2024共通テスト過去問
この動画を見る 
PAGE TOP