問題文全文(内容文):
$\tan(\cos^{-1}x)=\sin(\tan^{-1}\displaystyle \frac{4}{7})$を満たす$x$を求めよ。
$0 \leqq \cos^{-1}x \leqq \pi$
$-\displaystyle \frac{1}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$
$\tan(\cos^{-1}x)=\sin(\tan^{-1}\displaystyle \frac{4}{7})$を満たす$x$を求めよ。
$0 \leqq \cos^{-1}x \leqq \pi$
$-\displaystyle \frac{1}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師:
ますただ
問題文全文(内容文):
$\tan(\cos^{-1}x)=\sin(\tan^{-1}\displaystyle \frac{4}{7})$を満たす$x$を求めよ。
$0 \leqq \cos^{-1}x \leqq \pi$
$-\displaystyle \frac{1}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$
$\tan(\cos^{-1}x)=\sin(\tan^{-1}\displaystyle \frac{4}{7})$を満たす$x$を求めよ。
$0 \leqq \cos^{-1}x \leqq \pi$
$-\displaystyle \frac{1}{2} \lt \tan^{-1}x \lt \displaystyle \frac{\pi}{2}$
投稿日:2021.11.27