大学入試問題#20 群馬大医学部(2020) 対数,領域 - 質問解決D.B.(データベース)

大学入試問題#20 群馬大医学部(2020) 対数,領域

問題文全文(内容文):
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。

出典:2020年群馬大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。

出典:2020年群馬大学医学部 入試問題
投稿日:2021.09.28

<関連動画>

大学入試問題#923「帰納法で解いても良いのかな」

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#数学的帰納法#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数B
指導講師: ますただ
問題文全文(内容文):
$a_1=1,$ $a_n \neq 0$
$a_n=3(\sqrt{ S_n }-\sqrt{ S_{n-1} }),2 \leq n$

1.$a_2$を求めよ。
2.$\sqrt{ S_n }$を求めよ。
3.$a_n$を求めよ。

出典:1999年 千葉大学
この動画を見る 

福田の数学〜東京大学2025文系第3問〜確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{3}$

白玉$2$個が横に並んでいる。

投げたとき表と裏の出る確率が

それぞれ$\dfrac{1}{2}$のコインを用いて、

次の手順 (*) をくり返し、

白玉または黒玉を横一列に並べていく。

手順(*)

$\quad$コインを投げ、

$\quad$表が出たら白玉、裏が出たら黒玉を、

$\quad$それまでに並べられている一番右にある玉の

$\quad$右隣におく。

$\quad$そして、新しくおいた玉の色が

$\quad$その$1$つ左の玉の色と異なり、

$\quad$かつ$2$つ左の玉の色と一致するときには、

$\quad$新しくおいた玉の$1$つ左の玉を新しくおいた玉と

$\quad$同じ色の玉にとりかえる。

例えば、手順(*)を$2$回行いコインが裏、表の順に

出た場合には、白玉が$4$つ並ぶ。

正の整数$n$に対して、手順(*)を$n$回行った時点での

$(n + 2)$個の玉の並び方を考える。

(1)$n = 3$のとき、

右から$2$番目の玉が白玉である確率を求めよ。

(2)$n$を正の整数とする。

右から$2$番目の玉が白玉である確率を求めよ。

(3)$n$を正の整数とする。

右から$1$番目と$2$番目の玉がともに白玉である確率を求めよ。

$2025$年東京大学文系過去問題
この動画を見る 

対数と整数の融合問題!難問です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$log y (6x+y) =x$
を満たす正の整数の組を求めよ

一橋大過去問
この動画を見る 

知っていれば一瞬!!2次方程式と解と式の関係 2024早稲田実業

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$3x^2-4x-2=0$の2つの解をa,bとする。
$(3a^2-4a+2)(6b^2-8b)=?$
2024早稲田実業学校
この動画を見る 

大学入試問題#695「良き整数問題」 早稲田商学部(1999) #整数問題

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a,b,c$は整数の定数である。
すべての実数$x$について
$(x-a)(x-99)+2=(x-b)(x-c)$
が成り立つとき、$a,b,c$の値の組をすべて求めよ。

出典:1999年早稲田大学商学部 入試問題
この動画を見る 
PAGE TOP