大学入試問題#20 群馬大医学部(2020) 対数,領域 - 質問解決D.B.(データベース)

大学入試問題#20 群馬大医学部(2020) 対数,領域

問題文全文(内容文):
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。

出典:2020年群馬大学医学部 入試問題
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt x \lt 1,0 \lt y \lt 1$
$(log_xy)^2+log_y\displaystyle \frac{x^3}{y^4} \leqq 0$の表す領域を$xy$平面上に図示せよ。

出典:2020年群馬大学医学部 入試問題
投稿日:2021.09.28

<関連動画>

大学入試問題#603「もう飽きた?」 千葉大学(1989) #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$P_n=\sqrt[ n ]{ \displaystyle \frac{(3n)!}{(2n)!} }$とおく
(1)$\displaystyle \lim_{ n \to \infty } \displaystyle \frac{P_n}{n}$を求めよ

(2)$\displaystyle \lim_{ n \to \infty } (\displaystyle \frac{n+2}{n})^{P_n}$を求めよ

出典:1989年千葉大学 入試問題
この動画を見る 

福田の数学〜効率よく数えることが大切〜慶應義塾大学2023年環境情報学部第4問〜移動する2点が接触しない確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
※図は動画内
xy平面上でx座標もリ座標も整数である点を格子点という。この格子点上を次のように点 A と点 B が移動する。
・点 A は、時刻t= 0 において原点 O にあり、時刻tが 1 増えるごとに、x軸正方向に 1 あるいはy軸正方向に 1 のいずれかに等確率$\frac{1}{2}$で移動する。
・点 B は、時刻t= 0 において点( 1 , I) にあり、時刻 t が 1 増えるごとに、x軸正方向に 1 あるいはx軸負方向に 1 あるいはy軸正方向に 1 あるいはy軸負方向に 1のいずれかに等確率$\frac{1}{4}$で移動する。
ここで、時刻 t= k(k= 0 , 1 , 2 , 3 ,・・・)以前に点 A と点 B が一度も接触しない(同じ時刻に同じ座標を取らない)確率を P (k)とする。
(1)k0,1,2のとき、P(0)=1、P(1)=$\dfrac{\fbox{ア}}{\fbox{イ}}$,P(2)=$\dfrac{\fbox{ウ}}{\fbox{エ}}$である。
(2)k=3のとき、
(a)点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 3 , 0 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{オ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{カ}$通り。
(b) 点 A が点( I , 0 )と点( 2 , 0 )を経由して点( 2 , l) に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{キ}$通り。 3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{ク}$通り。
(c) 点 A が点( 1 , 0 )と点( 1 , 1) を経由して点( 2 , 1 )に移動する場合、 t=3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
(d) 点 A が点( 0 , 1) と点( 1 , 1) を経由して点( 2 , 1) に移動する場合、 t= 3 で初めて点 A と点 B が接触するような点 B の移動パタ ー ンは$\fbox{ケ}$通り。 t=3 より前に点 A と点 B が少なくとも一度は接触するような点 B の移動パタ ー ンは$\fbox{コ}$通り。
であるから、$P(3)=\dfrac{\fbox{サ}}{\fbox{シ}}$である。

2023慶應義塾大学環境情報学部過去問
この動画を見る 

大学入試問題#559「解法色々」 筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$

出典:2020年筑波大学 入試問題
この動画を見る 

センター試験レベル 指数方程式の解 津田塾大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#津田塾大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x$の方程式
$9^x+2a・3^x+2a^2+a-6=0$が正と負の解を各1つもつ$a$の範囲を求めよ

出典:2000年津田塾大学 過去問
この動画を見る 

【数Ⅲ】絶対に落としてはいけない微分!ポイントがぎゅっと詰まった問題【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数$ f(x)=x sin(\log x) (1≦x≦e^\pi)$の最大値を求めよ。

数学入試問題過去問
この動画を見る 
PAGE TOP