福田の数学〜東京工業大学2024年理系第2問〜関数方程式と曲線の長さ - 質問解決D.B.(データベース)

福田の数学〜東京工業大学2024年理系第2問〜関数方程式と曲線の長さ

問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 実数全体を定義域にもつ微分可能な関数$f(t)$, $g(t)$が次の6つの条件を満たしているとする。
$f'(t)$=$-f(t)g(t)$, $g'(t)$=$\left\{f(t)\right\}^2$,
$f(t)$>0, $|g(t)|$<1, $f(0)$=1, $g(0)$=0
このとき $p(t)$=$\left\{f(t)\right\}^2$+$\left\{g(t)\right\}^2$, $q(t)$=$\log\frac{1+g(t)}{1-g(t)}$ とおく。
(1)$p'(t)$を求めよ。
(2)$q'(t)$は定数関数であることを示せ。
(3)$\displaystyle\lim_{t \to \infty}g(t)$を求めよ。
(4)$f(T)$=$g(T)$となる正の実数$T$に対して、媒介変数表示された平面曲線($x$,$y$)=($f(t)$,$g(t)$) (0≦$t$≦$T$)の長さを求めよ。
投稿日:2024.03.17

<関連動画>

福田の数学〜京都大学2023年文系第1問〜3乗根の有理化

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#場合の数と確率#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#確率#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ 問1 nを自然数とする。1個のさいころをn回投げるとき、出た目の積が5で割り切れる確率を求めよ。
問2 次の式の分母を有理化し、分母に3乗根の記号が含まれない式として表せ。
$\frac{55}{2\sqrt[3]{9}+\sqrt[3]{3}+5}$

2023京都大学文系過去問
この動画を見る 

【理数個別の過去問解説】2019年度 明治大学 経営学部 数学 第3問解説(3)

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
〔Ⅲ〕$x+2y=5、x\gt 0,y\gt 0$を満たす実数x,yがある。
  (1) $2x^2+y^2$の最小値
  (2)$\log_{10}x+2\log_{10}y$の最大値
  (3)$\dfrac{1}{x}+\dfrac{2}{y}$ の最小値
この動画を見る 

大学入試問題#348「もはや、あれで置換」 横浜国立大学 #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{1}{2}} x^2\sqrt{ 1-x^2 }\ dx$

出典:横浜国立大学 入試問題
この動画を見る 

大学入試問題#772「初手は好みがでそう」 広島市立大学(2012) #不定積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#広島市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{log\ x}{\sqrt[ 3 ]{ x }} dx$

出典:2012年広島市立大学 入試問題
この動画を見る 

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
aを実数、$0 \lt a \lt 1$とし、$f(x)=\log(1+x^2)-ax^2$とする。以下の問いに答えよ.
(1)関数f(x)の極値を求めよ。
(2)$f(1)=0$とする。曲線$y=f(x)$とx軸で囲まれた図形の面積を求めよ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP