共通テスト2022(数学1A:総評)~鬼ムズ。できなくて当然です。【篠原好】 - 質問解決D.B.(データベース)

共通テスト2022(数学1A:総評)~鬼ムズ。できなくて当然です。【篠原好】

問題文全文(内容文):
共通テスト2022(数学1A:総評)~鬼ムズ。できなくて当然です。
単元: #数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
共通テスト2022(数学1A:総評)~鬼ムズ。できなくて当然です。
投稿日:2022.01.17

<関連動画>

【日本最速解答速報】共通テスト2023数学2B 第2問・第4問【今となっては過去問解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数学#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
共通テスト2023数学2B 第2問・第4問解説していきます.
この動画を見る 

【篠原共通塾】2022年度「数学1A」共通テスト過去問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
2022年度共通テスト「数学1A」の解説動画
この動画を見る 

2024年共通テスト徹底解説〜数学ⅠA第5問図形の性質〜福田の入試問題解説

アイキャッチ画像
単元: #数A#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第5 問(1) $\triangle AQD$と直線CEに着目すると$\dfrac{QR}{RD}・\dfrac{DS}{SA}・\dfrac{ア}{CQ}=1$が成り立つのでQR:RD=イ:ウ となる。また、$\triangle AQD$と直線BEに着目するとQB:BD=エ:オ となる。
したがって、BQ:QR:RD=エ:イ:ウとなる個tが分かる。
(2)5点P,Q,R,S,Tが同一演習場にあるとし、AC=8とする。
(i)5点A,P,Q,S,Tに着目すると、AT:ST=1:2より、AT=$\sqrt{ カ }$となる。さらに5点D,Q,R,S,Tに着目すると$DR=4\sqrt{ 3 }$となることがわかる。
( 2 ) 3 点 A , B, C を通る円と点 D の位置関係を次の構想に基づいて調べよう。
構想:線分 AC と BD の交点 Q に着目し、 AQ $\cdot$ CQ と BQ $\cdot$ DQ の大小を比べる。
まず AQ $\cdot$ CQ = 5 $\cdot$ 3 = 15 かっ BQ $\cdot$ DQ =キクであるから
AQ$\cdot$CQ ケ BQ$\cdot$DQ $\cdots$①
が成り立つ。また、3点A,B,Cを通る\と直線BDとの交点のうち、Bと異なる点をXとするとAQ$\cdot$CQ ケ BQ$\cdot$XQ $\cdots$②
①②の左辺は同じなので①②の右辺と比べることによりXQ サ DQが得られる。したがって点DはA,B,Cを通る円の シ にある。
(2)3 点 C , D , E を通る円と 2 点 A , B の位置関係について調べよう。この星形の図形において、さらにCR = RS = SE = 3 となることがわかる。したがって、点 A は 3 点 C, E, D を通る円の ス にあり、点 B は 3 点 C, E, D を通る円の セ にある。

2024共通テスト過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第2問微分積分〜円錐に内接する円柱の体積の最大と桜の開花予想

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#微分法と積分法#不定積分・定積分#面積、体積#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第2問
[1](1)kを正の定数とし、次の3次関数を考える。
$f(x)=x^2(k-x)$
y=f(x)のグラフとx軸との共有点の座標は(0, 0)と($\boxed{\boxed{\ \ ア\ \ }}$, 0)である。
f(x)の導関数f'(x)は
f'(x)=$\boxed{\ \ イウ\ \ }x^2+\boxed{\ \ エ\ \ }kx$
である。
x=$\boxed{\boxed{\ \ オ\ \ }}$のとき、f(x)は極小値$\boxed{\boxed{\ \ カ\ \ }}$をとる。
x=$\boxed{\boxed{\ \ キ\ \ }}$のとき、f(x)は極大値$\boxed{\boxed{\ \ ク\ \ }}$をとる。
また、0<x<kの範囲においてx=$\boxed{\boxed{\ \ キ\ \ }}$のときf(x)は最大となることがわかる。

$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ オ\ \ }}$~$\boxed{\boxed{\ \ ク\ \ }}$ の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①$\frac{1}{3}k$ ②$\frac{1}{2}k$ ③$\frac{2}{3}k$ 
④k ⑤$\frac{3}{2}k$ ⑥$-4k^2$ ⑦$\frac{1}{8}k^2$ 
⑧$\frac{2}{27}k^3$ ⑨$\frac{4}{27}k^3$ ⓐ$\frac{4}{9}k^3$ ⓑ$4k^3$

(2)後の図のように底面が半径9の円で高さが15の円錐に内接する円柱を考える。円柱の底面の半径と体積をそれぞれx, Vとする。Vをxの式で表すと
V=$\frac{\boxed{\ \ ケ\ \ }}{\boxed{\ \ コ\ \ }}\pi x^2(\boxed{\ \ サ\ \ }-x)$(0<x<9)
である。(1)の考察より、x=$\boxed{\ \ シ\ \ }$のときVは最大となることがわかる。Vの最大値は$\boxed{\ \ スセソ\ \ }\pi$である。

[2](1)定積分$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$の値は$\boxed{\ \ タチツ\ \ }$である。
また、関数$\displaystyle\frac{1}{100}x^2-\frac{1}{6}x+5$の不定積分は
$\displaystyle\int(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=$\displaystyle\frac{1}{\boxed{\ \ テトナ\ \ }}x^3-\frac{1}{\boxed{\ \ ニヌ\ \ }}x^2+\boxed{\ \ ネ\ \ }x+C$である。ただし、Cは積分定数とする。
(2)ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題になる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってからの気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの気温の折れ線グラフを見ながら、次のように考えることにした。(※図1は動画参照)
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)また、x日後の気温をy℃とする。このとき、yはxの関数であり、これをy=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の設定で考えることにした。
設定:正の実数tに対して、f(x)を0からtまで積分した値をS(t)とする。すなわち、S(t)=$\displaystyle\int_0^tf(x)dx$とする。このS(t)が400に到達したとき、ソメイヨシノが開花する。
設定のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2(※動画参照)のように直線とみなしてソメイヨシノの開花日時を考えることにした。
(i)太郎さんは
$f(x)=\displaystyle\frac{1}{5}x+3$ (x ≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ノ\ \ }}$となる。
$\boxed{\boxed{\ \ ノ\ \ }}$の解答群
⓪30日後 ①35日後 ②40日後 
③45日後 ④50日後 ⑤55日後 
⑥60日後 ⑦65日後
(ii)太郎さんと花子さんは、2月に入ってから30日後以降の気温について話をしている。
太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。
花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を表す関数が2次関数の場合も考えて見ようか。
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=$\frac{1}{5}x+3$ ...①
とし、x≧30のときは
f(x)=$\frac{1}{100}x^2-\frac{1}{6}x+5$ ...②
として考えた。なお、x=30のとき①の右辺の値と②の右辺の値は一致する。花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
$\displaystyle\int_0^{30}(\frac{1}{5}x+3)dx$=$\boxed{\ \ タチツ\ \ }$
であり
$\displaystyle\int_{30}^{40}(\frac{1}{100}x^2-\frac{1}{6}x+5)dx$=115
となることがわかる。
また、x ≧30の範囲においてf(x)は増加する。よって
$\displaystyle\int_{30}^{40}f(x)dx$ $\boxed{\boxed{\ \ ハ\ \ }}$ $\displaystyle\int_{40}^{50}f(x)dx$
であることがわかる。以上より、ソメイヨシノの開花日時は2月に入ってから$\boxed{\boxed{\ \ ヒ\ \ }}$となる。

2023共通テスト過去問
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IA第2問データの分析と2次関数

アイキャッチ画像
単元: #数Ⅰ#2次関数#データの分析#2次関数とグラフ#データの分析#数学(高校生)#大学入試解答速報#数学#共通テスト
指導講師: 福田次郎
問題文全文(内容文):
第2問
[1]太郎さんは総務省が公表している2020年の家計調査の結果を用いて、地域による食文化の違いについて考えている。家計調査における調査地点は、都道府県庁所在市および政令指定都市(都道府県庁所在市を除く)であり、合計52市である。家計調査の結果の中でも、スーパーマーケットなどで販売されている調理食品の「二人以上の世帯の1世帯当たり年間支出金額(以下、支出金額、単位は円)」を分析することにした。以下においては、52市の調理食品の支出金額をデータとして用いる。
太郎さんは調理食品として、最初にうなぎのかば焼き(以下、かば焼き)に着目し、図1のように(※動画参照)52市におけるかば焼きの支出金額のヒストグラムを作成した。
ただし、ヒストグラムの各階級の区間は、左側の数値を含み、右側の数値を含まない。
なお、以下の図や表については、総務省のWebページをもとに作成している。
(1)図1から次のことが読み取れる。
・第1四分位数が含まれる階級は$\boxed{\boxed{\ \ ア\ \ }}$である。
・第3四分位数が含まれる階級は$\boxed{\boxed{\ \ イ\ \ }}$である。
・四分位範囲は$\boxed{\boxed{\ \ ウ\ \ }}$。
$\boxed{\boxed{\ \ ア\ \ }}$、$\boxed{\boxed{\ \ イ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪1000以上1400未満 ①1400以上1800未満
②1800以上2200未満 ③2200以上2600未満
④2600以上3000未満 ⑤3000以上3400未満
⑥3400以上3800未満 ⑦3800以上4200未満
⑧4200以上4600未満 ⑨4600以上5000未満

$\boxed{\boxed{\ \ ウ\ \ }}$の解答群
⓪800より小さい
①800より大きく1600より小さい
②1600より大きく2400より小さい
③2400より大きく3200より小さい
④3200より大きく4000より小さい
⑤4000より大きい

(2)太郎さんは、東西での地域による食文化の違いを調べるために、52市を東側の地域E(19市)と西側の地域W(33市)の二つに分けて考えることにした。
(i)地域Eと地域Wについて、かば焼きの支出金額の箱ひげ図を、図2,図3のように(※動画参照)それぞれ作成した。
かば焼きの支出金額について、図2と図3から読み取れることとして、次の⓪~③のうち、
正しいものは$\boxed{\boxed{\ \ エ\ \ }}$である。
$\boxed{\boxed{\ \ エ\ \ }}$の解答群
⓪地域Eにおいて、小さい方から5番目は2000以下である。
①地域Eと地域Wの範囲は等しい。
②中央値は、地域Eより地域Wの方が大きい。
③2600未満の市の割合は、地域Eより地域Wの方が大きい。
(ii)太郎さんは、地域Eと地域Wのデータの散らばりの度合いを数値でとらえようと思い、
それぞれの分散を考えることにした。地域Eにおけるかば焼きの支出金額の分散は、地域Eのそれぞれの市におけるかば焼きの支出金額の偏差の$\boxed{\boxed{\ \ オ\ \ }}$である。
$\boxed{\boxed{\ \ オ\ \ }}$の解答群
⓪2乗を合計した値
①絶対値を合計した値
②2乗を合計して地域Eのの市の数で割った値
③絶対値を合計して地域Eの市の数で割った値
④2乗を合計して地域Eの市の数で割った値の平方根のうち正のもの
⑤絶対値を合計して地域Eの市の数で割った値の平方根のうち正のもの

(3)太郎さんは、(2)で考えた地域Eにおける、やきとりの支出金額についても調べることにした。
ここでは地域Eにおいて、やきとりの支出金額が増加すれば、かば焼きの支出金額も増加する傾向があるのではないかと考え、まず図4(※動画参照)のように、地域Eにおける、やきとりとかば焼きの支出金額の散布図を作成した。そして、相関係数を計算するために、表1(※動画参照)のように平均値、分散、標準偏差および共分散を算出した。ただし、共分散は地域Eのそれぞれの市における、やきとりの支出金額の偏差とかば焼きの支出金額の偏差との積の平均値である。
表1を用いると、地域Eにおける、やきとりの支出金額とかば焼きの支出金額の相関係数は$\boxed{\boxed{\ \ カ\ \ }}$である。
$\boxed{\boxed{\ \ カ\ \ }}$については、最も適当なものを、次の⓪~⑨のうちから一つ選べ。
⓪-0.62 ①-0.50②-0.37③-0.19
④-0.02⑤0.02⑥0.19⑦0.37
⑧0.50⑨0.62

[2]太郎さんと花子さんは、バスケットボールのプロ選手の中には、リングと同じ高さでシュートを打てる人がいることを知り、シュートを打つ高さによってボールの軌道がどう変わるかについて考えている。
二人は、図1(※動画参照)のように座標軸が定められた平面上に、プロ選手と花子さんがシュートを打つ様子を真横から見た図を描き、ボールがリング入った場合について、後の仮定を設定して考えることにした。長さの単位はメートルであるが、以下では省略する。
【仮定】
・平面上では、ボールを直径0.2の円とする。
・リングを真横から見たときの左端を点A(3.8, 3),右端を点B(4.2, 3)とし、リングの太さは無視する。
・ボールがリングや他のものに当たらずに上からリングを通り、かつ、ボールの中心がABの中点M(4, 3)を通る場合を考える。ただし、ボールがリングに当たるとは、ボールの中心とAまたはBとの距離が0.1以下になることとする。
・プロ選手がシュートを打つ場合のボールの中心を点Pとし、Pは、はじめに点$P_0$(0, 3)にあるものとする。また、$P_0$,Mを通る、上に凸の放物線を$C_1$とし、Pは$C_1$上を動くものとする。
・花子さんがシュートを打つ場合のボールの中心を点Hとし、Hは、はじめに点$H_0$(0, 2)にあるものとする。また、$H_0$, Mを通る、上に凸の放物線を$C_2$とし、Hは$C_2$上を動くものとする。
・放物線$C_1$や$C_2$に対して、頂点のy座標を「シュートの高さ」とし、頂点のx座標を「ボールが最も高くなるときの地上の位置」とする。
(1)放物線$C_1$の方程式における$x^2$の係数をaとする。放物線$C_1$の方程式は
y=a$x^2$-$\boxed{\ \ キ\ \ }$ax+$\boxed{\ \ ク\ \ }$
と表すことができる。また、プロ選手の「シュートの高さ」は
-$\boxed{\ \ ケ\ \ }$a+$\boxed{\ \ コ\ \ }$
である。

放物線$C_2$の方程式における$x^2$の係数をpとする。放物線$C_2$の方程式は
y=p$\left\{x-\left(2-\frac{1}{8p}\right)\right\}^2-\frac{(16p-1)^2}{64p}+2$
と表すことができる。
プロ選手と花子さんの「ボールが最も高くなるときの地上の位置」の比較の記述として、次の⓪~③のうち、正しいものは$\boxed{\boxed{\ \ サ\ \ }}$である。
$\boxed{\boxed{\ \ サ\ \ }}$の解答群
⓪プロ選手と花子さんの「ボールが最も高くなる時の地上の位置」は、常に一致する。
①プロ選手の「ボールが最も高くなるときの地上の位置」の方が、常にMのx座標に近い。
②花子選手の「ボールが最も高くなるときの地上の位置」の方が、常にMのx座標に近い。
③プロ選手の「ボールが最も高くなるときの地上の位置」の方がMのx座標に近いときもあれば、花子さんの「ボールが最も高くなるときの地上の位置」の方が、Mのx座標に近いときもある。
(2)二人は、ボールがリングすれすれを通る場合のプロ選手と花子さんの「シュートの高さ」について次のように話している。
太郎:例えば、プロ選手のボールがリングに当たらないようにするには、Pがリングの左端Aのどのくらい上を通れば良いのかな。
花子:Aの真上の点でPが通る点Dを、線分DMがAを中心とする半径0.1の円と接するようにとって考えてみたらどうかな。
太郎:なるほど。Pの軌道は上に凸の放物線で山なりだから、その場合、図2(※動画参照)のように、PはDを通った後で線分DMより上側を通るのでボールはリングに当たらないね。花子さんの場合も、HがこのDを通れば、ボールはリングに当たらないね。
花子:放物線$C_1$と$C_2$がDを通る場合でプロ選手と私の「シュートの高さ」を比べってみようよ。
図2のように、Mを通る直線lが、Aを中心とする半径0.1の円に直線ABの上側で接しているとする。また、Aを通り直線ABに垂直な直線を引き、lとの交点をDとする。このとき、AD=$\frac{\sqrt 3}{15}$である。
よって、放物線$C_1$がDを通るとき、$C_1$の方程式は
y=-$\frac{\boxed{\ \ シ\ \ }\sqrt{\boxed{\ \ ス\ \ }}}{\boxed{\ \ セソ\ \ }}\left(x^2-\boxed{\ \ キ\ \ }x\right)+\boxed{\ \ ク\ \ }$
となる。

2023共通テスト過去問
この動画を見る 
PAGE TOP