問題文全文(内容文):
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師:
ますただ
問題文全文(内容文):
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
$f'(x):$連続
$g(x)=\displaystyle \int_{0}^{x}(x-t)f'(t)dt$
$f'(x)-1=g'(x)-g"(x)$
$f(0)=1$をみたすとき
(1)$g'(x)=f(x)-1$を示せ
(2)$f(x),g(x)$を求めよ
投稿日:2021.09.22