問題文全文(内容文):
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。
出典:2020年岩手大学 入試問題
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。
出典:2020年岩手大学 入試問題
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102
Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師:
ますただ
問題文全文(内容文):
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。
出典:2020年岩手大学 入試問題
絶対値が1で偏角が$\displaystyle \frac{\pi}{5}$の複素数を$z$とする。
(1)$1+z+z^2+・・・+z^9$を求めよ。
(2)$z^4-z^3+z^2-z$を求めよ。
出典:2020年岩手大学 入試問題
投稿日:2021.10.04