【高校受験対策】数学-死守21 - 質問解決D.B.(データベース)

【高校受験対策】数学-死守21

問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#円#文章題#文章題その他#立体図形#体積・表面積・回転体・水量・変化のグラフ#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$7-(-5)$を計算しなさい.

②$(- 4) ^ 2 + 3 \times (- 2)$を計算しなさい.

③$\dfrac{3}{2} - 6y - \dfrac{1}{4} (3x-8y)$を計算しなさい.

④比例式$ 2:5 = (x - 2):(x + 7)$をみたす$x$の値を求めなさい.

⑤$\sqrt{45} - \sqrt{20} + \dfrac{15}{\sqrt5}$ を計算しなさい.

⑥$(x + 1)(x - 7) - 20$を因数分解しなさい.

⑦$a$の本の鉛筆を,$b$人の子どもに1人7本ずっ配ると3本余るとき,
$b$を$a$の式で表しなさい.

⑧ 右の図で,5点$A,B,C,D,E$は円$O$の円周上にあり,
$\angle BAC = 24°,\angle CED = 38°$,
$\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$である.
線分$BD$と線分$CE$の交点を$F$とするとき,$\angle CFD$の大きさを求めなさい.

⑨下の表には,6人の生徒$A~F$のそれぞれの身長から,
160cmをひいた値が示されている/
この表をもとに,これら6人の生徒の身長の平均を求めたところ161.5cmであった.
このとき,生徒$F$の身長を求めなさい.

⑩半径が3cmの球と体積の等しい円柱がある.
この円柱の底面の半径が4cmのとき,円柱の高さを求めなさい.

図は動画内参照
投稿日:2017.02.02

<関連動画>

【中学受験算数】べん図で瞬殺!超わかりやすい集合算の解き方! 【毎日1題!中学受験算数10】

アイキャッチ画像
単元: #算数(中学受験)#文章題#文章題その他#表とグラフ#表とグラフ・集合
指導講師: こばちゃん塾
問題文全文(内容文):
太良君のクラスで犬とネコの好ききらいを調べました。犬が好きな人は22人,ネコが好きな人は17人,犬かネコのどちらか一方だけが好きな人は29人,どちらもきらいな人は6人いました。
犬とネコのどちらも女子きな人は何人いますか。
この動画を見る 

【高校受験対策】数学-死守31

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#確率#2次関数#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$13 + 3\times (- 6)$を計算せよ。

②$3(2a + 3) - 2(5a + 4)$ を計算せよ。

③$a = - 3 , b = 4$とき、$3a^2-5b$の値を求めよ。

④$\dfrac{30}{\sqrt5}+\sqrt{20}$を計算せよ。

⑤ 1次方程式$3x-8=7x+16$を解け。

⑥2次方程式$(x + 1) ^ 2 = x + 13$を解け。

⑦関数$y =\dfrac{2}{3}x^2$について、
$x$の変域が$-1\leqq x \leqq 3$のときの$y$の変域を求めよ。

⑧$\boxed{1},\boxed{3},\boxed{5},\boxed{7},\boxed{9}$のカードが1枚ずつある。
この5枚のカードから、同時に2枚のカードを取り出すとき、
その2枚のカードにかかれている数の和が10以上になる確率を求めよ。
ただし、どのカードを取り出すことも同様に確からしいものとする。

⑨右の表は、A中学校とB中学校の生徒を対象に、
携帯電話やスマートフォンの1日あたりの使用時間を調査し、
その結果を度数分布表に整理したものである。
この表をもとに、A中学校とB中学校の「0時間以上1時間未満」の階級の相対度数のうち、
大きい方の相対度数を四捨五入して小数第2位まで求めよ。

図は動画内参照
この動画を見る 

中学受験算数「資料の活用①(度数分布表と相対度数)」小学4年生~6年生対象【毎日配信】※概要欄をご確認下さい。

アイキャッチ画像
単元: #算数(中学受験)#表とグラフ#表とグラフ・集合
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
例題 次の表は「学校50人のハンドボール投げの 記録を度数分布表に整理したものです。


(1)階級の幅は何ですか。


(2)表のアにあてはまる数を求めなさい。


(3)記録がよくない方から教えて8番目の人は、どの階級に入りますか。


(4)21m以上24m未満の相対度数を求めなさい。


(5)15m未満の相対度数を求めなさい。
この動画を見る 

【高校受験対策】数学-死守14

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$(2x - 1) - 5(x + 1)$ を計算しなさい.

②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.

③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.

④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$

⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.

⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.

⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.

⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.

⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.

⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守27

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#平方根#2次方程式#比例・反比例#空間図形#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x-6x$を計算しなさい。

②$\sqrt{28)}- \sqrt{7}$を計算しなさい。

③$x = sqrt2 + 3$のとき、$x ^ 2 - 6x + 9$の値を求めなさい。

④2次方程式$x ^ 2 - 2x - 7 = 0$を解きなさい。

⑤次の連立方程式を解きなさい。
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=4 \\
3x+2y=19
\end{array}
\right.
\end{eqnarray}$

⑥$y$は$x$に反比例し、$x = - 4a$のとき、$y = 3$です。
$x = 2$のときの$y$の値を求めなさい。

⑦中学生12人が、あるゲームを行いました。
左下の資料1は、そのゲームの得点を示したものです。
この資料の中央値(メジアン)と分布の範囲をそれぞれ求めなさい。

⑧半径が8cm、弧の長さが4匹cmのおうぎ形の面積を求めなさい。
ただし、円周率は$\pi$とする。

⑨ある2けたの自然数は、十の位の数と一の位の数の和が10で、
十の位の数と一の位の数の積が21です。
この2けたの自然数として考えられる数をすべて求めなさい。

⑩右の図のような三角柱$ABC-DEF$があります。
点$G$は辺$AD$の中点です。
三角柱$ABC-DEF$の体積は三角錐$G-DEF$の体積の何倍ですか。

図は動画内参照
この動画を見る 
PAGE TOP