【高校数学】 数Ⅱ-130 指数関数④・不等式編 - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-130 指数関数④・不等式編

問題文全文(内容文):
◎次の不等式を解こう。

$2^{x}-32 \gt 0$

$(\displaystyle \frac{1}{3})^{x-1} \leqq \displaystyle \frac{1}{27}$

$(\displaystyle \frac{1}{4})^{x} \leqq 2^{x+2}$

$16^{x}-3・4^{x}-4 \leqq 0$

$(\displaystyle \frac{1}{3})^{2x-1}+5・(\displaystyle \frac{1}{3})^{x}-2 \lt 0$
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の不等式を解こう。

$2^{x}-32 \gt 0$

$(\displaystyle \frac{1}{3})^{x-1} \leqq \displaystyle \frac{1}{27}$

$(\displaystyle \frac{1}{4})^{x} \leqq 2^{x+2}$

$16^{x}-3・4^{x}-4 \leqq 0$

$(\displaystyle \frac{1}{3})^{2x-1}+5・(\displaystyle \frac{1}{3})^{x}-2 \lt 0$
投稿日:2015.09.16

<関連動画>

福田の入試問題解説〜東京大学2022年文系第2問〜3次関数の法施線とグラフとの交点

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#微分法と積分法#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$y=x^3-x$により定まる座標平面上の曲線をCとする。
C上の点P$(\alpha,\alpha^3-\alpha)$を通り、
点PにおけるCの接線と垂直に交わる直線をlとする。Cとlは相異なる3点で交わるとする。
(1)$\alpha$のとりうる値の範囲を求めよ。
(2)Cとlの点P以外の2つの交点のx座標を$\beta,\gamma$とする。ただし$\beta \lt \gamma$とする。
$\beta^2+\beta\gamma+\gamma^2-1\neq 0$ となることを示せ。
(3)(2)の$\beta,\gamma$を用いて、
$u=4\alpha^3+\frac{1}{\beta^2+\beta\gamma+\gamma^2-1}$
と定める。このとき、uの取りうる値の範囲を求めよ。

2022東京大学文系過去問
この動画を見る 

下4桁!でも簡単

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3^{164}$の下3桁を求めよ.
この動画を見る 

指数

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ 8^a=27^b=64^c=24,\dfrac{2022 abc}{ab+bc+ca}$
の値を求めよ.
この動画を見る 

東工大 指数関数の接線の本数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=e^x$に$(a,b)$から何本の接線が引けるか.

1980東工大過去問
この動画を見る 

すっきりするただの計算問題

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x=\sqrt2+1$のとき,
$\dfrac{x^7-x}{x^8+1}$の値を求めよ.
この動画を見る 
PAGE TOP