とある男が授業をしてみた - 質問解決D.B.(データベース) - Page 25

とある男が授業をしてみた

※下の画像部分をクリックすると、先生の紹介ページにリンクします。

担当科目:数学、理科、社会、英語、国語

東京学芸大学卒業。
教員免許を持ちながら、営業マン、塾講師を経て、2012年にYouTubeチャンネル「とある男が授業をしてみた」を開設。
経済的に塾に通えない子どもたちに向けて授業動画を配信。「情熱大陸」や「サタデーステーション」などメディアにも多数出演。
定規まで用いて徹底的に準備された丁寧な板書とわかりやすい説明で、現在ではチャンネル登録者数200万人を超える。

【高校受験対策】数学-死守16

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$-4+(-3)$を計算しなさい.

②$-\dfrac{1}{7}+\dfrac{2}{5}$を計算しなさい.

③$16ab^2 \div 8ab$を計算しなさい.

④$\sqrt{54}-\dfrac{42}{\sqrt6}$を計算しなさい.

⑤$(x+2)(x+3)-(x+4)^2$を計算しなさい.

⑥$(x-5)^2-7(x-5)+12$を因数分解しなさい.

⑦2次方程式$5x^2-3x-1=0$を解きなさい.

⑧$x=3-\sqrt7$のとき,
$x^2-6x+9$の値を求めなさい.

⑨関数$y=ax^2$について,
$x$の値が$-3$から$-1$まで増加するときの変化の割合が$-3$であった.
このとき,$a$の値を求めなさい.

⑩1から6までの目の出る大,小2つのさいころを同時に1回投げるとき,
出た目の数の和が9以上とならない確率を求めなさい.

⑪半径が$2cm$である球の体積を$Pcm^3$,l
半径が$3cm$である球の体積を$Qcm^3$とするとき,
$P$と$Q$の比を最も簡単な整数の比で表しなさい。.
ただし,円周率は$\pi$とする.

⑫ 右の図において,線分$AB$は円$O$の直径であり,
2点$C,D$は円$O$の周上の点である.
このとき,$△ABC$の大きさを求めなさい.
この動画を見る 

【高校受験対策】数学-死守15

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#確率#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$6x-x$を計算しなさい.

②$6+(-2)\times 4$を計算しなさい.

③$\sqrt{45}-2\sqrt5$を計算しなさい.

④$x=18$のとき,
$x^2-6x-16$の値を求めなさい.

⑤2次方程式$3x^2+7x+1=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x+2y=18 \\
x+y=7
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦関数$y=\dfrac{1}{2}x^2$の値が1から5まで増加するときの変化の割合が,
一次関数$y = ax + 2$ の変化の割合と等しくなりました.
$a$の値を求めなさい.

⑧図1のような円錐の形のチョコレートがあります.
このチョコレートの8分の1の量をもらえることになり,
底面と平行に切って頂点のあるほうをもらうことにしました.
母線の長さを$8cm$とすると,
頂点から母線にそって何$cm$のところを切ればよいかを求めなさい.

⑨図2で,$\angle A=48$の$△ABC$があり,$\angle B,\angle C$の
二等分線をそれぞれかいたときの交点を$D$とします.
このとき,$\angle BDC$の大きさを求めなさい.

➉図3のように,円周上に18個の点が等間隔に並んでおり,
そのうちの点を$P$とします.
1個の黒石を点$P$上に置き,この黒石を,
1から6までの目が出るさいころを1回投げるごとに,
出た目の数だけ円周上の点上を順に動かします.
動かし方は,偶数の目が出たときは右回りに,
奇数の目が出たときは左回りに動かすものとします.
さいころを3回投げたとき,黒石が点$P$に戻っている確率を求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-関数26

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図1で,点$O$は原点,直線$\ell$は関数$y=\dfrac{1}{4}x^2$のグラフを表している.
点$A$,点$B$はともに曲線上にあり,$x$座標はそれぞれ$-4,2$である.
曲線上にある点を$P$とする.このとき,次の各問いに答えよ.

$\boxed{問1}$
点$P$の$y$座標を$a$とする.
点$P$が点$A$から点$B$まで動くとき,
$a$のとる値の範囲を不等号を使って,$\Box \leqq a \leqq \Box$で表せ.

$\boxed{問2}$
右の図2は,図1において,点$P$を通り傾き$-\dfrac{1}{2}$の直線を引き,
$y$軸との交点を$Q$とした場合を表している.
次の①,②に答えよ.

①異なる2点$A,P$を通る直線が$x$軸と平行になるとき,
2点$A,Q$を通る直線の式を求めよ.

②点$P$の$x$座標が2より大きい数であるとき,
点$A$と点$B$,点$A$と点$Q$,点$B$と点$Q$をそれぞれ結んだ場合を考える.
$△ABQ$の面積が30のとき,点$P$の座標を求めよ.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-図形14(動画内で13と間違えてます。汗)

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
鉄でできた円錐の形をしたおもりがある.
図1のようにおもりを倒し,すべらないように平面上を転がしたところ,
おもりは5回転して半径$10cm$の円をちょうど3周した.
このとき,次の各問いに答えなさい.ただし,円周率は$\pi$とする.

①半径$10cm$の円の円周の長さを求めなさい.

②このおもりの底面の半径を求めなさい.

③水が入っている円柱の形をした水そうがあり,水の高さは$ 2cm$である.
ここに図1のおもりを図2のように入れると,水の高さが最初の高さの2倍になった.
この水そうの底面の半径を求めなさい.
ただし,水そうの厚みは考えないものとする.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守14

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#円#表とグラフ#表とグラフ・集合#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$(2x - 1) - 5(x + 1)$ を計算しなさい.

②1次方程式$x-6=\dfrac{x}{4}$を計算しなさい.

③ $(- 6ab)^2 \div (- 9ab^2)$を計算しなさい.

④連立方程式を解きなさい.
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+3y=10 \\
4x-y=-8
\end{array}
\right.
\end{eqnarray}$

⑤$(2\sqrt{10}- 5)(\sqrt{10} + 4)$を計算しなさい.

⑥2次方程式 $2x^2 - 3x - 1 = 0$を解きなさい.

⑦関数$y=2x^2$について,$x$の変域が$a\leqq x\leqq 1$のとき,
$y$の変域は$0\leqq y \leqq 18$である.
このとき,$a$の値を答えなさい.

⑧図1のように,$△ABC$の2辺$AB,AC$上にそれぞれ,
点$D,E$があり,$DE /\!/ BC$である.
$BC = 8cm,△ADE$と$△ABC$の面積の比が$9:16$のとき,
線分$DE$の長さを答えなさい.

⑨図2のように,円$O$の円周上に4つの点$A,B,C,D$があり,
線分$AC$は円$O$の直径である.
$\angle DAC=55°$であるとき,$\angle x$の大きさを答えなさい.

⑩右の表は,生徒37人の最近1か月間に読んだ本の冊数を調べ,
度数分布表にまとめたものである.
このとき,冊数の中央値と最頻値を,それぞれ答えなさい.
また,冊数の平均値を,小数第2位を四捨五入して,
小数第1位まで答えなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-関数25

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のように,
関数$y=\dfrac{12}{x}$のグラフ上を$x \gt 0$の範囲で動く
点$A,x \lt 0$の範囲で動く点$B$があります.
点$B$の$x$座標の絶対値は点$A$の$x$座標の3倍であり,
線分$AB$と$x$軸との交点を$C$とします.
また,$x$軸上に点$D(5, 0)$があります.
これについて,次の各問いに答えなさい.

①点$A$の$x$座標が2のとき,直線$AD$の式を求めなさい.

②$\triangle ABD$の面積が28となるとき,
$\triangle ACD$の面積を求めなさい.

図は動画内を参照
この動画を見る 

【古文-13】各時代の代表作品

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各時代の代表作品を解説していきます.
この動画を見る 

【高校受験対策】数学-図形13

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形#立体図形#立体図形その他
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のような,底面の直径$AB$が$6cm$,
母線の長さが$6cm$の円錐で,母線$OB$の中点を$P$とします.
このとき,次の各問いに答えなさい.

①点$A$から$B$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.

②点$A$から$P$まで,側面上を半周してひもをかけます.
ひもの長さが最短になるときのひもの長さを求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守13

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#確率#円#立体図形#立体図形その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問いに答えなさい.

①$3-(-2)$を計算しなさい.

②$(-3)^2+5\times (-1)$を計算しなさい.

③$(2x^2-5x)-(3x^2-2x)$を計算しなさい.

④$(-4a^2)\times 18b \div 9ab$を計算しなさい.

⑤$(\sqrt3 + 1)^2$を計算しなさい.

⑥$x$に$-3$をかけて$5$をひいた数は$7$より小さい.
この数量の関係を不等式で表しなさい.

⑦次の連立方程式を解きなさい.
$3x+4y=x+y=2$

⑧2次方程式$(x-2)^2=81$を解きなさい.

⑨右の図で,$y$が$x$に比例するとき,
(ア)にあてはまる数を求めなさい.

⑩$1,2,3,4$の数字が書かれた4枚のカードが袋の中に入っている.
このカードを2枚同時に取り出すとき,
袋の中に残っているカードに書かれている数の和が,
取り出したカードに書かれている数の和より大きくなる確率を求めなさい.

⑪右上の図1は,底面の半径が$6cm$,母線の長さが$30cm$の円すいである.
この円すいの展開図をかいたとき,側面になるおうぎ形の中心角を求めなさい.

⑫右の図2の平行四辺形$ABCD$で,
$AB,BC$上にそれぞれ点$E,F$をとる.
$AC /\!/ EF$のとき,$△ACE$と面積が等しい三角形を3つ書きなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守12

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#確率
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の問いに答えよ.

①$5 \times (-4)^2 -3^2$を計算せよ.

②$\dfrac{5x-3y}{3}-\dfrac{3x-7y}{4}$を計算せよ.

③$\sqrt{27}-\dfrac{12}{\sqrt 3}-\sqrt{75}$を計算せよ.

④$x=\sqrt7+2,y=\sqrt7-2$のとき,
$x^2-y^2$の値を求めよ.

⑤方程式$2x+3y+6=0$のグラフをかけ.

⑥2次方程式$(x-2)^2=6$を解け.

⑦$1,2,4,8,16,32$の数が書かれた棒が1本ずつ入っている箱がある.
この箱から棒を同時に2本取り出すとき,
2本の棒に書かれている数の和が3の倍数となる確率を求めよ.
ただし,どの棒の取り出し方も同様に確からしいものとする.

⑧箱の中に白い玉だけがたくさん入っている.
この箱に赤い玉を80個入れてよくかき混ぜ,箱から50個の玉を無作為に取り出すと,
赤い玉が9個含まれていた.
最初に箱の中に入っていた白い玉はおよそ何個であると推測されるか,
次の(ア)~(エ)から1つ選べ.

(ア)およそ320個
(イ)およそ360個
(ウ)およそ400個
(エ)およそ440個

図は動画内を参照
この動画を見る 

【古文-12】徒然草②

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
徒然草②を解説していきます.
この動画を見る 

【古文-11】徒然草①

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
徒然草①を解説していきます.
この動画を見る 

【高校受験対策】数学-死守11

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えなさい.

①$(-2)\times (-3)+4$を計算しなさい.

②$\dfrac{2}{5}a+\dfrac{1}{3}a$を計算しなさい.

③$4(x+2y)-(6x+9y)$を計算しなさい.

④$5xy^2\times 7xy \div (-x)^2$を計算しなさい.

⑤$(\sqrt{2}+1)^2-\sqrt8$を計算しなさい.

⑥$x$についての2次方程式$x^2+ax-12=0$の解の一つが
$-2$であるとき,もう一つの解を求めなさい.

⑦右の図1のような半径$9cm$の半球があります.
この半球と等しい体積の円錐について考えます.
円錐の底面の半径が$9cm$であるとき,円錐の高さは何$cm$か求めなさい.

⑧右の図2は,ある学校の3年生50人の通学時間を調査し,
ヒストグラムに表したもので,平均値は$16.3$分でした.
下のアから工までの中から,
このヒストグラムからわかることについて正しく述べたものを1つ選び,
記号で答えなさい.

ア 通学時間の範囲は,16分である.

イ 通学時間の最頻値は,平均値よりも大きい.

ウ 通学時間の中央値が含まれる階級は,15分以上20分未満の階級である.

工 通学時間が20分以上25分未満の階級の相対度数は,$0.16$である.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-関数24(動画では間違って23と書いちゃいました。汗)

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で,曲線は関数$y=x^2$グラフです.
$x$軸上に $x$座標が$-3$である点$A$をとり,
点$A$を通り傾きが正の直線をひきます.
直線と曲線との交点のうちと座標が負のものを$B$,正のものを$C$とし,
直線と軸との交点を$D$とします.
このとき次の各問に答えなさい.ただし,座標軸の単位の長さを$1cm$とします.

①点$B$の$x$座標が$-2$のとき,$△BOD$の面積を求めなさい.

②$AB: BC = 1 :3$のとき,$BC$の長さを求めなさい.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守10

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#2次関数#文章題#文章題その他#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の各問に答えなさい.

①$9a-5a$を計算しなさい.

②$12\div (-2)+1$を計算しなさい.

③$6\sqrt7-\sqrt{28}$を計算しなさい.

④$x=13$のとき,$x^2-8x+15$の値を求めなさい.

⑤2次方程式$5x^2-9x+3=0$を解きなさい.

⑥連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
3x - 2y = 7 \\
x + y = -1
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑦右の図の曲線は,$y=ax^2$のグラフです.
グラフから,$a$の値を求めなさい.

⑧上の表は,あるクイズ大会に参加した40人全員の結果をまとめたものです.
クイズの問題は,$A,B,C$の3問ありました.
正解のときに与えられた得点は,$A,B$がそれぞれ1点,$C$が3点で,
正解のとき以外は0点でした.3問のうち2問だけが正解だった人数を求めなさい.

⑨右の図1の四角形$ABCD$は,$AD /\!/ BC$の台形であり,
線分$AC$と$DB$の交点を$E$とします.
$AB=AD,\angle BAC=80° \angle ACB = 30°$のとき,
$\angle DEC$の大きさ$x$を求めなさい.

⑩右の図2は,正四角錐の投影図です.
この正四角錐の立面図は,1辺の長さが$6cm$の正三角形です.
この正四角錐の体積を求めなさい.

⑪ある菓子店では,どら焼きを6個入りの箱と8個入りの箱で販売している.
6個入りの箱と8個入りの箱の組み合わせで,
どら焼きをちょうど34個買うには,6個入りの箱と8 個入りの箱は,
それぞれ何箱になるか求めなさい.
この動画を見る 

【古文-10】古語の活用と係り結び

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
古語の活用と係り結びを解説していきます.
この動画を見る 

【古文-9】枕草子③

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
枕草子③解説していきます.
この動画を見る 

【高校受験対策】数学-死守9

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#円#表とグラフ#表とグラフ・集合
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の各問に答えよ.

①$- 7 + 8 \times \left(-\dfrac{1}{4}\right)$を計算せよ.

②$9(a + b) - (a + 3b) $を計算せよ.

③$(\sqrt7 + 6)(\sqrt7 - 2)$ を計算せよ.

④一次方程式$ x - 5 = 3x + 1 $を解け.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x-y=9 \\
x-6y=8
\end{array}
\right.
\end{eqnarray}$

⑥一次方程式 $x ^ 2 - 12x + 35 = 0 $を解け.

⑦右の表は,
ある中学校の3年生男子全体のハンドボール投げの記録を,
度数分布表に整理したものである.
26m以上投げた生徒の人数は,
3年生男子全体の何%か.

⑧右の図で,2点$C,D$は,線分$AB$を直径とする半円$O$の
$\stackrel{\huge\frown}{AB}$上にある点で,
$\stackrel{\huge\frown}{AC}=\dfrac{4}{9}\stackrel{\huge\frown}{AB},\stackrel{\huge\frown}{BD}=\dfrac{1}{3}\stackrel{\huge\frown}{AB}$である.
線分$AD$と線分$BC$の交点を$E$とするとき,
$\angle AEC$の大きさは何度か.

図は動画内を参照
この動画を見る 

【古文-8】枕草子②

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
枕草子②解説していきます.
この動画を見る 

【古文-7】枕草子①

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
枕草子①解説していきます.
この動画を見る 

【高校受験対策】数学-死守8

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#文章題#文章題その他#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$4 \times (5+2)$を計算しなさい.

②$\dfrac{2}{3}-\dfrac{1}{5}$を計算しなさい.

③$24\div (-6)$を計算しなさい.

④$3(2x-y)-(x+5y)$を計算しなさい.

⑤連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
x+3y=8 \\
2x-y=-5
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑥$x^2+x-56$を因数分解しなさい.

⑦$(\sqrt{27}-\sqrt3)\times \sqrt2$を計算しなさい.

⑧方程式$x^2-5x+1=0$を解きなさい.

⑨下の図のように,$\triangle ABC$の辺$BC$を延長して$CD$とし,
辺$CA$を延長して$AE$とします.
$\angle ABC=41°,\angle ACD=124°$のとき,
$\angle BAE$の大きさは何度ですか.

⑩1箱60円のチョコレートと1個40円のあめが売られています.
このチョコレートとあめを買うとき,代金をちょうど500円にするには,
買い方は全部で何通りありますか.

図は動画内を参照
この動画を見る 

【高校受験対策】数学-死守7

アイキャッチ画像
単元: #数学(中学生)#中2数学#中3数学#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#確率#円
指導講師: とある男が授業をしてみた
問題文全文(内容文):
1.次の計算をしなさい.

①$4+(-9)$

②$2-3\times (-2)$

③$3ab-ab$

2.次の各問に答えなさい.

④次の$\Box$に当てはまる記号を,
$=,<,>$の中から選びなさい.

$(-6)^2\Box -6^2$

⑤$(x+2y)(x-2y)$を展開しなさい.

⑥$x^2+2x-8$を因数分解しなさい.

⑦$x=\sqrt2,y=(\sqrt3 -\sqrt2)$のとき,
$x^2+xy$の値を求めなさい.

⑧方程式$\dfrac{1}{2}x+3=2x$を解きなさい.

⑨連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
4x + y = 8 \\
x - 3y =15
\end{array}
\right.
\end{eqnarray}$を解きなさい.

⑩右の図で,点$A,B,C,D$は円$O$の周上の点で,
$\angle ADB=36°$,線分$AC$は円$O$の直径である.
このとき,$\angle BAC$の大きさを求めなさい.

⑪1つのさいころを2回投げるとき,
2回目に出た目の数が,1回目に出た目の数の約数となる
確率を求めなさい.

図は動画内を参照
この動画を見る 

【古文-6】この古語は覚えておこう④

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
意味をかこう.

①さらなり
②うしろめたし
③ ねんごろなり
④え・・・(打ち消し)
⑤えもいはず
⑥なかなか
⑦すさまじ
⑧さすがに
⑨あいなし
⑩かしづく
この動画を見る 

【高校受験対策】数学-関数23

アイキャッチ画像
単元: #数学(中学生)#中3数学#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図において,①は関数$y=\dfrac{1}{2}x^2$,
②は$x$軸に平行な直線のグラフである.
①と②の交点のうち,$x$座標が正のものを$A$,負のものを$B$とする.
また,$C$は$x$軸上を動く点で,2点$B,C$を通る直線のグラフを③とし,
①と③のグラフの交点のうち,$B$でないほうを$P$とする.
ただし,点$C$の$x$座標は正である.

①点$A$の$x$座標が3のとき,$△OAB$の面積を求めよ.

②点$B$の$x$座標を$-4$,点$C$の$x$座標を$12$とするとき,
直線$BC$の式を求めよ.

③点$B$の$y$座標を$4$とする.
$△OPB$と$△OCP$の面積が等しいとき,
$△OCB$を$x$軸を軸として1回転させてできる
立体の体積を求めよ.

図は動画内を参照
この動画を見る 

【古文-5】この古語は覚えておこう③

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
意味をかこう.

①としごろ
②いたづらなり
③やうやう
④はづかし
⑤うたてし
⑥さうざうし
⑦ゆかし
⑧べからず
⑨うしろやすし
⑩さらに
この動画を見る 

【古文-4】この古語は覚えておこう②

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
意味をかこう.

①をかし
② あはれなり
③ つれづれなり
④ つとめて
⑤ かなし
⑥ののしる
⑦あさまし
⑧ ありがたし
⑨ やがて
⑩ こころにくし
この動画を見る 

【古文-3】この古語は覚えておこう①

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
意味をかこう.

①うつくし
② おどろく
③いと
④つゆ
⑤ふみ
⑥けしき
⑦つきづきし
⑧いとほし
⑨らうたし
⑩あした
この動画を見る 

【古文-2】歴史的仮名遣い②

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
歴史的仮名遣い②を解説していきます.
この動画を見る 

【古文-1】歴史的仮名遣い①

アイキャッチ画像
単元: #国語(高校生)#古文#古文常識
指導講師: とある男が授業をしてみた
問題文全文(内容文):
歴史的仮名遣いに関して解説していきます.
この動画を見る 

【きっかけ英熟語-最終回】

アイキャッチ画像
単元: #英語(高校生)#会話文・イディオム・構文・英単語#英単語
指導講師: とある男が授業をしてみた
問題文全文(内容文):
英熟語を解説していきます.

①finish ~ing
②in front of~
③get well
④have been to~
⑤thanks to~
この動画を見る 
PAGE TOP