とある男が授業をしてみた
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【高校受験対策/数学】死守58
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#2次方程式#比例・反比例#空間図形#1次関数#文字と式#標本調査
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守58 @397
①$5-8$を計算せよ
②$-4 \times(-3)^2$を計算せよ。
③$(4a^2b+6ab^2)\div 2ab$を計算せよ。
④$(x+y)^2-5xy$を計算せよ。
⑤絶対値が$4$より小さい整数は何個あるか。
⑥2次方程式$x^2+5x+2=0$を解け。
⑦$y$が$x$に反比例し、$x$と$y$の値が下の表のように対応しているとき、表のAに当てはまる数を求めよ。
⑧図1は円すいの展開図で、底面の半径は$5cm$、側面のおうぎ形の半径は$12cm$である。
$\angle x$の大きさを求めなさい。
⑨一の位の数が0でない、2桁の自然数Aがある。
Aの十の位の数とーの位の数を入れかえてできる数をBとする。
Aの十の位の数は一の位の数の2倍であり、BはAより36小さい。このときAの値を求めよ。
⑩右の表はある市における、7月の日ごとの最高気温を度数分布表にまとめたものである。
この表から読み取ることができることがらとして適切なものを、次のア~オからすべて選べ。
ア $32.0℃$以上$34.0℃$未満の階緑の相対度数は$0.16$よりきい。
イ 階級の幅は$12.0℃$である。
ウ 最高気温が$28.0℃$以上の日は、$5$日である。
エ 最頻値(モード)は、$27.0℃$である。
オ $30.0℃$以上$32.0℃$未満の階級の階級値は、$30.0℃$である。
この動画を見る
高校受験対策・死守58 @397
①$5-8$を計算せよ
②$-4 \times(-3)^2$を計算せよ。
③$(4a^2b+6ab^2)\div 2ab$を計算せよ。
④$(x+y)^2-5xy$を計算せよ。
⑤絶対値が$4$より小さい整数は何個あるか。
⑥2次方程式$x^2+5x+2=0$を解け。
⑦$y$が$x$に反比例し、$x$と$y$の値が下の表のように対応しているとき、表のAに当てはまる数を求めよ。
⑧図1は円すいの展開図で、底面の半径は$5cm$、側面のおうぎ形の半径は$12cm$である。
$\angle x$の大きさを求めなさい。
⑨一の位の数が0でない、2桁の自然数Aがある。
Aの十の位の数とーの位の数を入れかえてできる数をBとする。
Aの十の位の数は一の位の数の2倍であり、BはAより36小さい。このときAの値を求めよ。
⑩右の表はある市における、7月の日ごとの最高気温を度数分布表にまとめたものである。
この表から読み取ることができることがらとして適切なものを、次のア~オからすべて選べ。
ア $32.0℃$以上$34.0℃$未満の階緑の相対度数は$0.16$よりきい。
イ 階級の幅は$12.0℃$である。
ウ 最高気温が$28.0℃$以上の日は、$5$日である。
エ 最頻値(モード)は、$27.0℃$である。
オ $30.0℃$以上$32.0℃$未満の階級の階級値は、$30.0℃$である。
【高校受験対策/理科14】イオン
単元:
#理科(中学生)#化学
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
Q
化学変化とイオンについて調べるために実験を行いました。これについてあとの各問いに答えなさい。
【実験】
図1のようにうすい塩酸とうすい水酸化ナトリウム水溶液をそれぞれ満たした装置を用意して、しばらく電流を流したところ、ガラス管A~Dのそれぞれに気体が集まった。
表はこのときのそれぞれのガラス管に集まった、気体名とその体積をまとめたものである。
①うすい塩酸や水酸化ナトリウム水溶液の溶質のように、水溶液にすると電流を通す物質を何というか書きなさい。
②ガラス管Bに集まった塩素が、他のガラス管に集まった気体に比べて極めて少なかった理由を、簡潔に書きなさい。
③うすい塩酸は塩化水素の水溶液です。
塩化水素の電離のようすを正しく表すためにA、Bに入るイオン式を書きなさい。
④図1の4つの電極A~Dのうち、陰極はどれかA~Dから2つ選び、記号で答えなさい。
⑤電源装置の電圧を変えずに、電気分解の装置に電流をしばらく流し続けると、流れる電流の強さはどのように変化するか。
最も適当なものを次から1つ選び、記号で答えなさい。
ア 強くなる。
イ 弱くなる。
ウ 変わらない。
この動画を見る
Q
化学変化とイオンについて調べるために実験を行いました。これについてあとの各問いに答えなさい。
【実験】
図1のようにうすい塩酸とうすい水酸化ナトリウム水溶液をそれぞれ満たした装置を用意して、しばらく電流を流したところ、ガラス管A~Dのそれぞれに気体が集まった。
表はこのときのそれぞれのガラス管に集まった、気体名とその体積をまとめたものである。
①うすい塩酸や水酸化ナトリウム水溶液の溶質のように、水溶液にすると電流を通す物質を何というか書きなさい。
②ガラス管Bに集まった塩素が、他のガラス管に集まった気体に比べて極めて少なかった理由を、簡潔に書きなさい。
③うすい塩酸は塩化水素の水溶液です。
塩化水素の電離のようすを正しく表すためにA、Bに入るイオン式を書きなさい。
④図1の4つの電極A~Dのうち、陰極はどれかA~Dから2つ選び、記号で答えなさい。
⑤電源装置の電圧を変えずに、電気分解の装置に電流をしばらく流し続けると、流れる電流の強さはどのように変化するか。
最も適当なものを次から1つ選び、記号で答えなさい。
ア 強くなる。
イ 弱くなる。
ウ 変わらない。
【高校受験対策/英語】Lesson1
単元:
#英語(中学生)#時刻の表し方とたずね方、曜日・日付のたずね方、When~?、「時」を表す前置詞#Whで始まる疑問文、Howで始まる疑問文、付加疑問文、否定疑問文#不定詞(名詞的用法・形容詞的用法・副詞的用法)#受動態#現在完了(継続、経験、完了・結果)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・英語1
【1】次の日本丈に合う英文になるように、( )に入る最も適当な英語を1語ずつ書きなさい。
① 私はまだ宿題を終えていません。
I ( ) finished my homework ( ).
② 彼はラジオを聞くのが好きです。
He likes ( ) to the radio.
【2】次の日本丈に合う英文になるように、[ ]内の話(句)を正しく並びかえ、英文を完成させなさい。 ただし、文頭の語(句)の最初の文字も小文字で示しています。
①この本は多くの人々に読まれています。
[read, a lot of, by, people, book, this, is ].
②あなたは今日、昼食に何を食べたいですか。
[do, you, lunch, eat, for, what, to, want ] today?
③私が家に帰ったとき、弟はゲームをしていました。
[brother, came, a game, I, was, my, when, playing] home.
この動画を見る
高校受験対策・英語1
【1】次の日本丈に合う英文になるように、( )に入る最も適当な英語を1語ずつ書きなさい。
① 私はまだ宿題を終えていません。
I ( ) finished my homework ( ).
② 彼はラジオを聞くのが好きです。
He likes ( ) to the radio.
【2】次の日本丈に合う英文になるように、[ ]内の話(句)を正しく並びかえ、英文を完成させなさい。 ただし、文頭の語(句)の最初の文字も小文字で示しています。
①この本は多くの人々に読まれています。
[read, a lot of, by, people, book, this, is ].
②あなたは今日、昼食に何を食べたいですか。
[do, you, lunch, eat, for, what, to, want ] today?
③私が家に帰ったとき、弟はゲームをしていました。
[brother, came, a game, I, was, my, when, playing] home.
【高校受験対策動画】国語1
単元:
#国語(中学生)#文法
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
【高校受験対策動画】国語1
1.雨が降れば明日の遠足は中止になる。
2.あなたはなぜ昨日の会合を欠席したのか。
3.①~復習をすれば理解できる。
②~ごとに並べて整理する。
4.
①
大きな家
この本
小さい犬
いろんな色
➁
晴れならば
罰せず
短く切る
服を着替える
この動画を見る
【高校受験対策動画】国語1
1.雨が降れば明日の遠足は中止になる。
2.あなたはなぜ昨日の会合を欠席したのか。
3.①~復習をすれば理解できる。
②~ごとに並べて整理する。
4.
①
大きな家
この本
小さい犬
いろんな色
➁
晴れならば
罰せず
短く切る
服を着替える
【高校受験対策/数学】死守57
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#1次関数#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
この動画を見る
高校受験対策・死守57
①$6\times (-3)$を計算しなさい。
②$9-(-4)^2 \times \frac{5}{8}$を計算しなさい。
③$a^2b×21b \div 7a$を計算しなさい。
④連立方程式
$0.2x+1.5y=4$
$x-3y=-1$を解きなさい。
⑤$\frac{12}{\sqrt{3}}-3\sqrt{6} \times \sqrt{8}$を計算しなさい。
⑥二次方程式$x^2+5x+5=0$を解きなさい。
⑦ある美術館の入館料は、おとな1人が$a$円、中学生1人が$b$円である。
このとき、不等式$2a+3b \gt 2000$が表している数量の関係として最も適当なものを、次のア~エのうちから1つ選び、符号で答えなさい。
ア おとな2人と中学生3人の入館料の合計は、2000円より安い。
イ おとな2人と中学生3人の入館料の合計は、2000円より高い。
ウ おとな2人と中学生3人の入館料の合計は、2000円以下である。
エ おとな2人と中学生3人の入館料の合計は、2000円以上である。
⑧-5、-2、-1、3、6、10の整数が1つずつ書かれた6枚のカードがある。
この6枚のカードをよくきって、同時に2枚ひく。
このとき、ひいた2枚のカードに書かれた数の平均値が、自然数になる確率を求めなさい。
ただし、どのカードをひくことも同様に確からしいものとする。
【高校受験対策/数学】死守56
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#平方根#比例・反比例#資料の活用#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守56
①$4-6 \div (-2)$を計算しなさい。
②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。
③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。
④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。
⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。
⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。
⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。
⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
この動画を見る
高校受験対策・死守56
①$4-6 \div (-2)$を計算しなさい。
②$(\sqrt{5}-1)^2+\sqrt{20}$を計算しなさい。
③$(2x+1)(3x-1)-(2x-1)(3x+1)$を計算しなさい。
④方程式$(x+1)(x-1) = 3(x+1)$を解きなさい。
⑤500円出して$a$円の鉛筆5本と $b$円の消しゴム1個を買うと、おつりがあった。
この数量の関係を不等式で表しなさい。
⑥2種類の体験学習A・Bがあり、生徒は必ずA・Bのいずれか一方に参加する。
A・Bそれぞれを希望する生徒の人数の比は$1:2$であった。
その後、14人の生徒がBからAへ希望を変更したため、A.Bそれぞれを希望する生徒の人数の比は$5:7$となった。
体験学習に参加する生徒の人数は何人か、求めなさい。
⑦関数に$y=x^2$について正しく述べたものを、次のア~エからすべて選びなさい。
ア $x$の値が増加すると、$y$の値も増加する。
イ グラフが$y$軸を対称の軸として線対称である。
ウ $x$の変域が$-1 \leqq x \leqq 2$のとき、その変域は$-1 \leqq y \leqq 4$
である。
エ $x$がどんな値をとっても、$y \geqq 0$である。
⑧男子生徒6人のハンドボール投げの記録は右のようであった。
6人のハンドボール投げの記録の中央値は何mか求めなさい。
【高校受験対策/数学】死守55
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#2次関数#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
この動画を見る
高校受験対策・死守55
①$(-3)^2+2 \times (-5)$を計算しなさい。
②$\frac{4x-3}{2}\times\frac{6x-7}{5}$を計算しなさい。
③$(-4xy)^2×(-3x)$を計算しなさい。
④連立方程式を解きなさい。
$4x-3y=-7$
$5x+9y=-13$
⑤$5\sqrt{6}+2\sqrt{24}-\frac{6\sqrt{3}}{\sqrt{2}}$を計算しなさい。
⑥二次方程式$(x+4)(x-6)=6x-39$を解きなさい。
②関数$y=ax^2$について、$x$の値が$-5$から$-3$まで増加したときの変化の割合が$2$であるとき、$a$の値を求めなさい。
⑧底面の半径が$5$ cm、高さが$6$ cmの円すいの体積を求めなさい。 ただし円周率は$\pi$とする。
⑨右の図1のように、三角形$ABC$の$\angle B$の二等分線と$\angle C$の外角$\angle ACD$の二等分線の交点を$E$とする。
$\angle BAC$の大きさが$40°$のとき、$\angle BEC$の大きさを求めなさい。
⑩右の図2で、$\angle APB=120°$のひし形$AQBP$を1つ、 定規とコンパスを用いて作図しなさい。 なお作図に用いた線は消さずに残して おきなさい。
【高校受験対策/数学】死守-54
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守54
①$9-8 \div\frac{1}{2}$を計算せよ。
②$3(5a-b)-(7a-4b)$を計算せよ。
③$(2-\sqrt{6})(1+\sqrt{6})$を計算せよ。
④一次方程式$9x+4=5(x+8)$を解け。
⑤連立方程式を解け。
$7x-3y=6$
$x+y=8$
⑥二次方程式$3x^2+9x+5=0$を解け。
⑦右の表は、生徒40人について自宅からA駅まで歩いたときにかかる時間を調査し、度数分布表に整理したものである。
かかる時間が15分未満である人数は全体の何%か求めよ。
⑧図1で、点$O$は線分$AB$を直径とする円の中心であり、2点$C$、$D$は円$O$の周上にある点である。
$\angle AOC=\angle BDC$、$\angle ABD=34°$のとき、$\angle OCD$の大きさを求めよ。
⑨右下の図2で、$△ABC$は鋭角三角形である。
辺$AC$上にあり、$AP=BP$となる点$P$を、定規とコンパスを用いて作図せよ。
ただし、作図に用いた線は消さないでおくこと。
この動画を見る
高校受験対策・死守54
①$9-8 \div\frac{1}{2}$を計算せよ。
②$3(5a-b)-(7a-4b)$を計算せよ。
③$(2-\sqrt{6})(1+\sqrt{6})$を計算せよ。
④一次方程式$9x+4=5(x+8)$を解け。
⑤連立方程式を解け。
$7x-3y=6$
$x+y=8$
⑥二次方程式$3x^2+9x+5=0$を解け。
⑦右の表は、生徒40人について自宅からA駅まで歩いたときにかかる時間を調査し、度数分布表に整理したものである。
かかる時間が15分未満である人数は全体の何%か求めよ。
⑧図1で、点$O$は線分$AB$を直径とする円の中心であり、2点$C$、$D$は円$O$の周上にある点である。
$\angle AOC=\angle BDC$、$\angle ABD=34°$のとき、$\angle OCD$の大きさを求めよ。
⑨右下の図2で、$△ABC$は鋭角三角形である。
辺$AC$上にあり、$AP=BP$となる点$P$を、定規とコンパスを用いて作図せよ。
ただし、作図に用いた線は消さないでおくこと。
【数Ⅲ-171】積分と体積②(断面積編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積②、断面積編)
ポイント
座標が$x$の点を通る$x$軸に垂直な平面による立体の切り口の面積を$S(x)$とするとき、
2平面$x=a$、$x=b$の間にある立体の体積$V$は$V=$①。
②$xy$平面上に2点P$(x,0)$、Q$(x,\sin x)$をとり、PQを斜辺とする直角二等辺三角形PQRを、$x$軸に垂直な平面上に図のようにつくる。
Pが$x$軸上を原点oから点A$(\pi,0)$まで動くとき、この直角二等辺三角形が通過してできる立体の 体積を求めよ。
この動画を見る
数Ⅲ(積分と体積②、断面積編)
ポイント
座標が$x$の点を通る$x$軸に垂直な平面による立体の切り口の面積を$S(x)$とするとき、
2平面$x=a$、$x=b$の間にある立体の体積$V$は$V=$①。
②$xy$平面上に2点P$(x,0)$、Q$(x,\sin x)$をとり、PQを斜辺とする直角二等辺三角形PQRを、$x$軸に垂直な平面上に図のようにつくる。
Pが$x$軸上を原点oから点A$(\pi,0)$まで動くとき、この直角二等辺三角形が通過してできる立体の 体積を求めよ。
【数Ⅲ-170】積分と体積①(基本編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と体積①・基本編)
ポイント
曲線$y=f(x)$と$x$軸と$x=a$、$x=b(a<b)$で囲まれた部分を
$x$軸のまわりに1回転してできる回転体の体積$V$は①。
②$y=e^x$、$x$軸、$x=1$、$x=2$で囲まれた部分を、$x$軸のまわりに1回転してできる立体の体積
③$x=y^2-1$、$y$軸で囲まれた部分を、$y$軸のまわりに1回転してできる立体の体積
この動画を見る
数Ⅲ(積分と体積①・基本編)
ポイント
曲線$y=f(x)$と$x$軸と$x=a$、$x=b(a<b)$で囲まれた部分を
$x$軸のまわりに1回転してできる回転体の体積$V$は①。
②$y=e^x$、$x$軸、$x=1$、$x=2$で囲まれた部分を、$x$軸のまわりに1回転してできる立体の体積
③$x=y^2-1$、$y$軸で囲まれた部分を、$y$軸のまわりに1回転してできる立体の体積
【高校受験対策/数学】死守53
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#文字と式
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
この動画を見る
高校受験対策・死守53
①$2-(-9)$を計算せよ。
②$52a^2b \div (-4a)$を計算せよ。
③$\sqrt{28}+\frac{49}{\sqrt{7}}$を計算せよ。
④$\frac{3x-y}{3}-\frac{x-2y}{4}$を計算せよ。
⑤$(\sqrt{2}+1)^2-5({\sqrt{2}+1)}+4$を計算せよ。
⑥2次方程式$x^2-5x-3=0$を解きなさい。
⑦関数$y=-\frac{1}{3}x^2$について、$x$の値が$3$から$6$まで増加するときの変化の割合を求めなさい。
⑧連立方程式
$ax+by=10$
$bx-ay=5$
の解が$x=2$、$y=1$であるとき$a$、$b$の値を求めなさい。
⑨ある動物園では、大人1人の入園料が子ども1人の入園料より600円高い。
大人1人の入園料と子ども 1人の入園料の比が$5:2$であるとき、子ども1人の入園料を求めなさい。
⑩$\frac{5880}{n}$が自然数の平方となるような、最も小さい自然数$n$の値を求めなさい。
【数Ⅲ-167】積分と面積③(三角関数編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
この動画を見る
数Ⅲ(積分と面積③・三角関数編)
Q
$0≦x≦\pi$において、次の2曲線で囲まれた部分の面積を求めよ。
①$y=\sin x$、$y=\cos 2x$
➁$y=\sin x$、$y=\sin 3x$
【数Ⅲ-166】積分と面積②(やや複雑編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積②・やや複雑編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
この動画を見る
数Ⅲ(積分と面積②・やや複雑編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①曲線$x=y^2-1$、直線$x-y-1=0$
②2曲線$y=x^2$、$y=\frac{2x}{x^2+1}$
【数Ⅲ-165】積分と面積①(基本編)
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(積分と面積①・基本編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①$y=\sqrt{x}$、$x=1$、$x=4$、$x$軸
②$y=\log x$、$y=2$、$x$軸、$y$軸
③$y=x^2$、$y=2x+3$
この動画を見る
数Ⅲ(積分と面積①・基本編)
Q
次の曲線と直線で囲まれた部分の面積を求めよ。
①$y=\sqrt{x}$、$x=1$、$x=4$、$x$軸
②$y=\log x$、$y=2$、$x$軸、$y$軸
③$y=x^2$、$y=2x+3$
【数Ⅲ-164】定積分と不等式の証明
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分と不等式の証明)
①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
この動画を見る
数Ⅲ(定積分と不等式の証明)
①$0≦x≦1$のとき、$1-x^2≦1-x^4≦1$が成り立つことを示せ。
②不等式$\frac{\pi}{4} \lt \int_0^1\sqrt{1-x^4}dx \lt 1$を示せ。
【数Ⅲ-163】区分求積法②
単元:
#数学(中学生)#積分とその応用#面積・体積・長さ・速度#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
この動画を見る
数Ⅲ(微分求積法②)
Q.次の極限値を求めよ。
①$\displaystyle \lim_{ n \to \infty } (\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{n+n})$
➁$\displaystyle \lim_{ n \to \infty } (\frac{1}{n\sqrt{n}})(\sqrt{2}+\sqrt{4}+…+\sqrt{2n})$
③$\displaystyle \lim_{ n \to \infty }\frac{\pi}{n} \sum_{k=1}^{n}\cos^2\frac{k\pi}{6n}$
【数Ⅲ-162】区分求積法①
単元:
#積分とその応用#面積・体積・長さ・速度#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(区分求積法①)
ポイント
$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=1}^{n} f(\frac{k}{n})=\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})=$①
Q.次の極限値を求めよ。
➁$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(\frac{1}{n})^2}+(\frac{2}{n})^2+…(\frac{n}{n})^2\}$
③$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(1+\frac{1}{n})^2}+(1+\frac{2}{n})^2+…(1+\frac{n}{n})^2\}$
この動画を見る
数Ⅲ(区分求積法①)
ポイント
$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=1}^{n} f(\frac{k}{n})=\displaystyle \lim_{ n \to \infty }\frac{1}{n}\sum_{k=0}^{n-1} f(\frac{k}{n})=$①
Q.次の極限値を求めよ。
➁$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(\frac{1}{n})^2}+(\frac{2}{n})^2+…(\frac{n}{n})^2\}$
③$\displaystyle \lim_{ n \to \infty }\frac{1}{n}\{{(1+\frac{1}{n})^2}+(1+\frac{2}{n})^2+…(1+\frac{n}{n})^2\}$
【数Ⅲ-161】定積分で表された関数④(最大最小編)
単元:
#微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数④・最大最小編)
①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。
②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。
この動画を見る
数Ⅲ(定積分で表された関数④・最大最小編)
①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。
②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。
【数Ⅲ-160】定積分で表された関数③(極値編)
単元:
#微分とその応用#積分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。
①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$
➁$f(x)=\int_0^x (1-t^2)e^tdt$
この動画を見る
数Ⅲ(定積分で表された関数③・極値編)
Q.次の関数の極値を求めよ。
①$f(x)=\int_0^xt\cos t \ dt(0 \lt x \lt \pi)$
➁$f(x)=\int_0^x (1-t^2)e^tdt$
【数Ⅲ-159】定積分で表された関数②
単元:
#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数➁)
Q.次の等式を満たす関数$f(x)$を求めよ。
①$f(x)=\frac{1}{x}+\int_1^2 tf(t)dt$
➁$f(x)=x+\int_0^1 f(t)e^tdt$
③$\int_1^x (x-t)f(x)dt=x^4-2x^2+3$
この動画を見る
数Ⅲ(定積分で表された関数➁)
Q.次の等式を満たす関数$f(x)$を求めよ。
①$f(x)=\frac{1}{x}+\int_1^2 tf(t)dt$
➁$f(x)=x+\int_0^1 f(t)e^tdt$
③$\int_1^x (x-t)f(x)dt=x^4-2x^2+3$
【数Ⅲ-158】定積分で表された関数①
単元:
#微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。
①$\int_a^x \frac{t}{1+e^{2t}}dt$
➁$\int_0^{x} (x-t)e^{2t}dt$
③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
この動画を見る
数Ⅲ(定積分で表された関数①)
Q.次の関数を$x$について微分せよ。ただし$a$は定数とする。
①$\int_a^x \frac{t}{1+e^{2t}}dt$
➁$\int_0^{x} (x-t)e^{2t}dt$
③$\int_0^{2x+1} \frac{1}{t^2+1}dt$
【数Ⅲ-157】定積分の部分積分法③
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ
①$\int_1^{e} (\log x)^2dx$
➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
この動画を見る
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ
①$\int_1^{e} (\log x)^2dx$
➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
【数Ⅲ-155】定積分の部分積分法①
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ。
①$\int_0^{\pi}x \sin x\ dx$
➁$\int_0^{1}xe^{-2x}\ dx$
③$\int_1^e\log x\ dx$
この動画を見る
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ。
①$\int_0^{\pi}x \sin x\ dx$
➁$\int_0^{1}xe^{-2x}\ dx$
③$\int_1^e\log x\ dx$
【数Ⅲ-154】定積分の置換積分法③
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法③)
Q次の定積分を求めよ。
①$\int_{-\frac{\pi}{3}}^\frac{\pi}{3}x^2\sin x \ dx$
➁$\int_{-1}^1\frac{1-x}{1+x^2} \ dx$
③$\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\cos^3 x \ dx$
この動画を見る
数Ⅲ(定積分の置換積分法③)
Q次の定積分を求めよ。
①$\int_{-\frac{\pi}{3}}^\frac{\pi}{3}x^2\sin x \ dx$
➁$\int_{-1}^1\frac{1-x}{1+x^2} \ dx$
③$\int_{-\frac{\pi}{2}}^\frac{\pi}{2}\cos^3 x \ dx$
【数Ⅲ-153】定積分の置換積分法②(偶関数と奇関数)
単元:
#積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の置換積分法➁・偶数関数と奇関数)
Q次の定積分を求めよ。
①$\int_{-2}^2\sqrt{4-x^2} \ dx$
➁$\int_{-\pi}^\pi\sin x\ dx$
③$\int_{-1}^1 (x^4-5x^3+4x-2)\ dx$
この動画を見る
数Ⅲ(定積分の置換積分法➁・偶数関数と奇関数)
Q次の定積分を求めよ。
①$\int_{-2}^2\sqrt{4-x^2} \ dx$
➁$\int_{-\pi}^\pi\sin x\ dx$
③$\int_{-1}^1 (x^4-5x^3+4x-2)\ dx$
中学1年生で勉強する資料の分析を1本の動画にまとめてみました【新学習指導要領】
単元:
#数学(中学生)#中1数学#資料の活用
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
資料の分析と活用のまとめ
右の表1を(①)表という。 ※表は動画参照
資料を整理するために用いる区間を(②)
区間の幅を(③)、(➁)の真ん中の値を(④)、その(➁)に入っている資料の個数を(⑤)といい
その(➁)に入っている資料の個数を(⑤)といい、(⑤)の合計に対する割合を(⑥)という。
また、表2のような柱状グラフを(⑦)といい、
それぞれの長方形の上の辺の中点を結んだものを(⑧)線という。
この動画を見る
資料の分析と活用のまとめ
右の表1を(①)表という。 ※表は動画参照
資料を整理するために用いる区間を(②)
区間の幅を(③)、(➁)の真ん中の値を(④)、その(➁)に入っている資料の個数を(⑤)といい
その(➁)に入っている資料の個数を(⑤)といい、(⑤)の合計に対する割合を(⑥)という。
また、表2のような柱状グラフを(⑦)といい、
それぞれの長方形の上の辺の中点を結んだものを(⑧)線という。
中学2年生で勉強する確率を1本の動画にまとめてみました。
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
確率のまとめ
ポイント
確率とは(①)が起こると( )される( )を表したもの
〈定期テストではよく出るトランプ〉
Q.ジョーカーを除く52枚のカードから1枚ひくとき、次の確率を求めなさい。
②スペードのカードをひく確率
③ハートかつ奇数のカードをひく確率
この動画を見る
確率のまとめ
ポイント
確率とは(①)が起こると( )される( )を表したもの
〈定期テストではよく出るトランプ〉
Q.ジョーカーを除く52枚のカードから1枚ひくとき、次の確率を求めなさい。
②スペードのカードをひく確率
③ハートかつ奇数のカードをひく確率
【高校受験対策/数学】死守52
単元:
#数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#式の計算(単項式・多項式・式の四則計算)#連立方程式#式の計算(展開、因数分解)#平方根#2次方程式#空間図形#文字と式#平面図形
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
この動画を見る
高校受験対策・死守52
①$8+3\times(-2)$を計算しなさい。
➁$9a+1-2(3a-2)$を計算しなさい。
③$8x^2y \times(-6xy)$を計算しなさい。
④$\frac{9}{\sqrt{3}}+\sqrt{12}$を計算しなさい。
⑤二次方程式$x^2+x-6=0$を解きなさい。
⑥1本$a$円の鉛筆3本と1冊$b$円のノート 5冊の代金の合計は500円より高い。
これらの数量の関係を不等式で表しなさい。
⑦右の図は三角柱ABCDEFである。
辺ABとねじれの位置にある辺は何本あるか答えなさい。
⑧右の図のような$△ABC$がある。
3つの頂点、$A$、$B$、$C$ から等しい距離にある点$P$を作図によって求め、$P$の記号をつけなさい。
ただし、作図に用いた線は残しておくこと。
⑨A中学校の生徒数は、男女あわせて365人である。
そのうち男子の80%と女子の60%が運動部に所属しており、その人数は257人であった。
このとき、A中学校の男子の生徒数と女子の生徒数をそれぞれ求めなさい。
⑩箱の中に1、2、3、4の数が1つずつ書かれた同じ大きさの玉が1個ずつ入っている。
中を見ないでこの箱から同時に2個の玉を取り出すとき、取り出した玉の数の和が5以下となる確率を求めなさい。
【高校受験対策/数学】図形35
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形35
Q.
右の図のように、$AE=10cm$、$EF=8cm$、$FG=6cm$の直方体$ABCD-EFGH$がある。
線分$EG$と線分$FH$の交点を$P$とし、 線分$CE$、$CP$の中点をそれぞれ$M$、$N$とする。
このとき、次の問1~問に答えなさい。
①線分$EG$と線分$EC$の長さを、それぞれ答えなさい。
② 線分$MN$の長さを求めなさい。
③$△ENM$の面積を求めなさい。
④三角すい$BENM$の体積を求めなさい。
この動画を見る
高校受験対策・図形35
Q.
右の図のように、$AE=10cm$、$EF=8cm$、$FG=6cm$の直方体$ABCD-EFGH$がある。
線分$EG$と線分$FH$の交点を$P$とし、 線分$CE$、$CP$の中点をそれぞれ$M$、$N$とする。
このとき、次の問1~問に答えなさい。
①線分$EG$と線分$EC$の長さを、それぞれ答えなさい。
② 線分$MN$の長さを求めなさい。
③$△ENM$の面積を求めなさい。
④三角すい$BENM$の体積を求めなさい。
【高校受験対策/数学】難解死守4
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守4
①連立方程式を解け
$\frac{2x-y}{3}=\frac{y}{2}-1$
$(x+1):(y-2)=3:4$
➁$3\sqrt{8}-\frac{\sqrt{3}}{2}-\sqrt{2}+\sqrt{75}$
③$x,y,z$を$0$以上の整数とするとき、$x+2y+3z=20$を満たす整数の組$(x,y,z)$は何組あるか。
④$x^2yz-y^3z+2y^2z^2-yz^3$を因数分解せよ。
⑤大中小3つのさいころを同時に1回投げて、大中小のさいころの出た目の数をそれぞれ$a,b,c$とする。
このとき$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$となる確率を求めよ。
⑥右の図のように、円$o$の周上に5点、$A,B,C,D,E$をとる。
線分$AC$は 円$o$の直径であり、$\stackrel{\huge\frown}{BC}=\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$、$\angle BAC=15°$である。
線分$AC$と$BE$の交点を$F$とするとき、$\angle AFE$の大きさを求めよ。
この動画を見る
高校受験対策・難解死守4
①連立方程式を解け
$\frac{2x-y}{3}=\frac{y}{2}-1$
$(x+1):(y-2)=3:4$
➁$3\sqrt{8}-\frac{\sqrt{3}}{2}-\sqrt{2}+\sqrt{75}$
③$x,y,z$を$0$以上の整数とするとき、$x+2y+3z=20$を満たす整数の組$(x,y,z)$は何組あるか。
④$x^2yz-y^3z+2y^2z^2-yz^3$を因数分解せよ。
⑤大中小3つのさいころを同時に1回投げて、大中小のさいころの出た目の数をそれぞれ$a,b,c$とする。
このとき$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$となる確率を求めよ。
⑥右の図のように、円$o$の周上に5点、$A,B,C,D,E$をとる。
線分$AC$は 円$o$の直径であり、$\stackrel{\huge\frown}{BC}=\stackrel{\huge\frown}{CD}=\stackrel{\huge\frown}{DE}$、$\angle BAC=15°$である。
線分$AC$と$BE$の交点を$F$とするとき、$\angle AFE$の大きさを求めよ。