とある男が授業をしてみた
※下の画像部分をクリックすると、先生の紹介ページにリンクします。
【高校受験対策/数学】死守51
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守51
①$-7+9-8$を計算しなさい。
➁$8x^2\div4x$を計算しなさい。
③連立方程式を解きなさい。
$2x-y=1$
$-3x+y=2$
④$\frac{4}{\sqrt{2}}+\sqrt{18}$を計算しなさい。
⑤正五角形の1つの内角の大きさは何度ですか。
⑥3枚の硬貨を同時に投げるとき、1枚が表で2枚が裏になる確率を求めなさい。
⑦$x$は$y$に反比例し、$x=-4$のとき$y=5$です。$y$を$x$の式で表しなさい。
⑧半径$\frac{1}{3}cm$の球の表面積は何cmですか。ただし、円周率$\pi$はとする。
⑨右の表は、ある中学校のソフトテニス部の10人の部員A~J のうち、
欠席したCさん以外の9人について、握力を測定し小数第1位を四捨五入した記録を示したものである。
後日、Cさんの握力を測定し、小数第1位を四捨五入した記録をこの表に加えたところ、
10人の記録の中央値は、Cさんの記録を加える前の9人の記録の中央値から1kg増加しました。
表に加えたCさんの記録は何kgですか。
この動画を見る
高校受験対策・死守51
①$-7+9-8$を計算しなさい。
➁$8x^2\div4x$を計算しなさい。
③連立方程式を解きなさい。
$2x-y=1$
$-3x+y=2$
④$\frac{4}{\sqrt{2}}+\sqrt{18}$を計算しなさい。
⑤正五角形の1つの内角の大きさは何度ですか。
⑥3枚の硬貨を同時に投げるとき、1枚が表で2枚が裏になる確率を求めなさい。
⑦$x$は$y$に反比例し、$x=-4$のとき$y=5$です。$y$を$x$の式で表しなさい。
⑧半径$\frac{1}{3}cm$の球の表面積は何cmですか。ただし、円周率$\pi$はとする。
⑨右の表は、ある中学校のソフトテニス部の10人の部員A~J のうち、
欠席したCさん以外の9人について、握力を測定し小数第1位を四捨五入した記録を示したものである。
後日、Cさんの握力を測定し、小数第1位を四捨五入した記録をこの表に加えたところ、
10人の記録の中央値は、Cさんの記録を加える前の9人の記録の中央値から1kg増加しました。
表に加えたCさんの記録は何kgですか。
【高校受験対策/数学】関数48
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数 48
Q
右の図のように、関数$y=x^2$のグラフ上に2点、$A,B$が、
関数$y=ax^2$のグラフ上に2点、$C,D$があり、
点$A$と点$D$の$x$座標は$3$、点$B$と点$C$の$x$座標は$-2$である。
点$A$と点$B$、点$B$と点$C$、点$C$と点$D$、点$D$と点$A$をそれぞれ結ぶ。
このとき、次の各問いに答えなさい。ただし$a \lt 0$とする。
①点$A$の座標を求めなさい。
②2点$A,B$を通る直線の式を求めなさい。
③四角形$ABCD$の面積が$50$であるとき、$a$の値を求めなさい。
この動画を見る
高校受験対策・関数 48
Q
右の図のように、関数$y=x^2$のグラフ上に2点、$A,B$が、
関数$y=ax^2$のグラフ上に2点、$C,D$があり、
点$A$と点$D$の$x$座標は$3$、点$B$と点$C$の$x$座標は$-2$である。
点$A$と点$B$、点$B$と点$C$、点$C$と点$D$、点$D$と点$A$をそれぞれ結ぶ。
このとき、次の各問いに答えなさい。ただし$a \lt 0$とする。
①点$A$の座標を求めなさい。
②2点$A,B$を通る直線の式を求めなさい。
③四角形$ABCD$の面積が$50$であるとき、$a$の値を求めなさい。
【高校受験対策/数学】死守50
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守50
①$-3-(-5)$を計算しなさい。
②$(-2) \times 6$を計算しなさい。
③$2(a-2b)-(a+b)$を計算しなさい。
④$90a^2b \div 30$を計算しなさい。
⑤$(\sqrt{3}+2)(\sqrt{3}-2)$を計算しなさい。
⑥方程式$x^2+3x-1=0$を解きなさい。
⑦2点$(1,1)$、$(3,-3)$を通る直線の式を求めなさい。
⑧右図のような立方体がある。
面ABCD上の線分ACと面BFGC上の線分BGの長さに ついて、
正しく述べられている文はア~エのうちではどれですか。一つ答えなさい。
ア 線分ACの方が長い
イ 線分ACと線分BGの長さは等しい
ウ 線分BGの方が長い
エ 問題の条件だけでは、どちらが長いか決まらない
⑨同じ大きさの玉がたくさん入っている袋がある。
この袋の中から30個の玉を取り出し、その全部に印をつけて戻した。
その後、袋の中をよくかき混ぜ50個の玉を無作為に抽出すると、印をつけた玉が5個含まれていた。
はじめに袋の中に入っていた玉の個数はおよそ何個か答えなさい。
⑩右図のような、AB=4cm、BC=3cmの長形ABCD がある。
この長方形を、辺DCを軸として1回転させてできる立体の体積を求めなさい。
この動画を見る
高校受験対策・死守50
①$-3-(-5)$を計算しなさい。
②$(-2) \times 6$を計算しなさい。
③$2(a-2b)-(a+b)$を計算しなさい。
④$90a^2b \div 30$を計算しなさい。
⑤$(\sqrt{3}+2)(\sqrt{3}-2)$を計算しなさい。
⑥方程式$x^2+3x-1=0$を解きなさい。
⑦2点$(1,1)$、$(3,-3)$を通る直線の式を求めなさい。
⑧右図のような立方体がある。
面ABCD上の線分ACと面BFGC上の線分BGの長さに ついて、
正しく述べられている文はア~エのうちではどれですか。一つ答えなさい。
ア 線分ACの方が長い
イ 線分ACと線分BGの長さは等しい
ウ 線分BGの方が長い
エ 問題の条件だけでは、どちらが長いか決まらない
⑨同じ大きさの玉がたくさん入っている袋がある。
この袋の中から30個の玉を取り出し、その全部に印をつけて戻した。
その後、袋の中をよくかき混ぜ50個の玉を無作為に抽出すると、印をつけた玉が5個含まれていた。
はじめに袋の中に入っていた玉の個数はおよそ何個か答えなさい。
⑩右図のような、AB=4cm、BC=3cmの長形ABCD がある。
この長方形を、辺DCを軸として1回転させてできる立体の体積を求めなさい。
【高校受験対策/数学】死守49
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守49
①$-9-6\div3$を計算しなさい。
➁$3a+2-(\frac{1}{3}a+1)$を計算しなさい。
③$90$を素因数分解しなさい。
④$(\sqrt{8}+1)(\sqrt{2}-3)$を計算しなさい。
⑤
$ax+by=1$
$bx-2ay=8$
の解が$x-2,y=3$であるとき$a,b$の値をそれぞれ求めなさい。
⑥
右図の四面体ABCDにおいて、辺を直線とみたとき、
直線ABとねじれの位置にある直線を答えなさい。
⑦
1、2、3、4の数字が書かれた4個の玉が入った袋がある。
この袋の中から2個の玉を1個ずつ順に取り出す。
1個目の玉に書かれた数を$a$、2個目の玉に書かれた数を$b$とするとき、$a^2 \times b \div 2ab^2=1$が成り立つ確率を 求めなさい。
ただし、どの玉の取り出し方も同様に確からしいとする。
⑧
右の表はある部活動の1年生 7人、2年生8人のハンドボール投げ の記録である。
1年生の記録の中央値と2年生の記録の中央値が等しいとき、$x$の値を求めなさい。
この動画を見る
高校受験対策・死守49
①$-9-6\div3$を計算しなさい。
➁$3a+2-(\frac{1}{3}a+1)$を計算しなさい。
③$90$を素因数分解しなさい。
④$(\sqrt{8}+1)(\sqrt{2}-3)$を計算しなさい。
⑤
$ax+by=1$
$bx-2ay=8$
の解が$x-2,y=3$であるとき$a,b$の値をそれぞれ求めなさい。
⑥
右図の四面体ABCDにおいて、辺を直線とみたとき、
直線ABとねじれの位置にある直線を答えなさい。
⑦
1、2、3、4の数字が書かれた4個の玉が入った袋がある。
この袋の中から2個の玉を1個ずつ順に取り出す。
1個目の玉に書かれた数を$a$、2個目の玉に書かれた数を$b$とするとき、$a^2 \times b \div 2ab^2=1$が成り立つ確率を 求めなさい。
ただし、どの玉の取り出し方も同様に確からしいとする。
⑧
右の表はある部活動の1年生 7人、2年生8人のハンドボール投げ の記録である。
1年生の記録の中央値と2年生の記録の中央値が等しいとき、$x$の値を求めなさい。
【高校受験対策/数学/難解死守3】
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守3
①方程式$\frac{2x-3}{4}=\frac{x+2}{3}$を解け。
➁$\frac{x-6}{8}-0.75=\frac{1}{2}x$を解け
③$a^2-2b^2-ab+bc+ca$を因数分解せよ。
④$\sqrt{n^2+55}$が自然数となるような自然数$n$の値をすべて求めよ。
⑤
右の図のような台形$ABCD$があり、点$E$は辺$AB$の中点である。
また、線分$ED$上に点$F$を$EF:FD=2:5$となるようにとる。
このとき、$△ECF$の面積は台形$ABCD$の面積の何倍になるか求めよ。
⑥
3桁の正の整数$N$がある。
$N$を100で割った余りは百の位の数を12倍した数に1加えた数に等しい。
また、$N$の一の位の数を十の位に、$N$の十の位の数を百の位に、
$N$の百の位の数を一の位にそれぞれ置きかえてできる数はもとの整数$N$より63大きい。
このとき正の整数$N$を求めよ。
この動画を見る
高校受験対策・難解死守3
①方程式$\frac{2x-3}{4}=\frac{x+2}{3}$を解け。
➁$\frac{x-6}{8}-0.75=\frac{1}{2}x$を解け
③$a^2-2b^2-ab+bc+ca$を因数分解せよ。
④$\sqrt{n^2+55}$が自然数となるような自然数$n$の値をすべて求めよ。
⑤
右の図のような台形$ABCD$があり、点$E$は辺$AB$の中点である。
また、線分$ED$上に点$F$を$EF:FD=2:5$となるようにとる。
このとき、$△ECF$の面積は台形$ABCD$の面積の何倍になるか求めよ。
⑥
3桁の正の整数$N$がある。
$N$を100で割った余りは百の位の数を12倍した数に1加えた数に等しい。
また、$N$の一の位の数を十の位に、$N$の十の位の数を百の位に、
$N$の百の位の数を一の位にそれぞれ置きかえてできる数はもとの整数$N$より63大きい。
このとき正の整数$N$を求めよ。
【高校受験対策/数学/関数47】
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数47
Q.
右図において、①は$y=x^2$のグラフであり、②は$y=\frac{3}{4}x$のグラフである。
①上に点$P(p,p^2)$がある。
点$P$を通り軸に平行な直線と、②との交点を$Q$、$x$軸との交点を$R$とする。
また、点$P$を通り$x$軸に平行な直線と②との交点を$S$とする。
このとき次の各問いに答えなさい。ただし、$0 \lt p \lt \frac{3}{4}$とする。
問1
$p=2$のとき、$△PQS$の面積を求めなさい。
問2
$PQ=\frac{5}{64}$であるとき、$P$の値をすべて求めなさい。
問3
点$P$を中心として、$x$軸と点$R$で接する円が②と2つの点$A$、$B$で交わっている。
$\angle APB$を中心角とするおうぎ形$PAB$の面積が円の面積の$\frac{1}{3}$になるとき、$P$の値を求めなさい。
この動画を見る
高校受験対策・関数47
Q.
右図において、①は$y=x^2$のグラフであり、②は$y=\frac{3}{4}x$のグラフである。
①上に点$P(p,p^2)$がある。
点$P$を通り軸に平行な直線と、②との交点を$Q$、$x$軸との交点を$R$とする。
また、点$P$を通り$x$軸に平行な直線と②との交点を$S$とする。
このとき次の各問いに答えなさい。ただし、$0 \lt p \lt \frac{3}{4}$とする。
問1
$p=2$のとき、$△PQS$の面積を求めなさい。
問2
$PQ=\frac{5}{64}$であるとき、$P$の値をすべて求めなさい。
問3
点$P$を中心として、$x$軸と点$R$で接する円が②と2つの点$A$、$B$で交わっている。
$\angle APB$を中心角とするおうぎ形$PAB$の面積が円の面積の$\frac{1}{3}$になるとき、$P$の値を求めなさい。
【高校受験対策/数学/難解死守2】
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守2
①2次方程式$(2x-3)^2+2(2x-3)-15=0$を解け。
②$\sqrt{3}+\sqrt{2}y=1$、$\sqrt{2}x+\sqrt{3}y=\sqrt{6}$のとき、$x^2-y^2$の値を求めよ。
③ビーカーAには$x$%の食塩水300g、ビーカーBには8%の食塩水350gがそれぞれ入っている。
AとBに入っている食塩水をすべて混ぜ合わせたところ11%の食塩水ができた。
このとき、$y$を$x$の式で表しなさい。
④$a=-3$、$b=5$のとき、$(\frac{3}{4}a^3b)^3 \times (-\frac{1}{9}ab^2)^2 \div (-\frac{5}{128}a^7b^6)$の値を求めよ。
⑤の小数部分を$x$とするとき、$x^3+21x^2+x-19$の値を求めなさい。
⑥右の図のように、$\angle DAB=\angle ABC=\angle ACB=36°$である$△ABC$がある。
このとき辺$AB$の長さを求めよ。
この動画を見る
高校受験対策・難解死守2
①2次方程式$(2x-3)^2+2(2x-3)-15=0$を解け。
②$\sqrt{3}+\sqrt{2}y=1$、$\sqrt{2}x+\sqrt{3}y=\sqrt{6}$のとき、$x^2-y^2$の値を求めよ。
③ビーカーAには$x$%の食塩水300g、ビーカーBには8%の食塩水350gがそれぞれ入っている。
AとBに入っている食塩水をすべて混ぜ合わせたところ11%の食塩水ができた。
このとき、$y$を$x$の式で表しなさい。
④$a=-3$、$b=5$のとき、$(\frac{3}{4}a^3b)^3 \times (-\frac{1}{9}ab^2)^2 \div (-\frac{5}{128}a^7b^6)$の値を求めよ。
⑤の小数部分を$x$とするとき、$x^3+21x^2+x-19$の値を求めなさい。
⑥右の図のように、$\angle DAB=\angle ABC=\angle ACB=36°$である$△ABC$がある。
このとき辺$AB$の長さを求めよ。
【高校受験対策/数学/確率7】シンプルなコイン問題
単元:
#数学(中学生)#中2数学#確率
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
校受験対策・確率7
Q
表に1と書かれたコインが1枚、2と書かれたコインが1枚、4と書かれたコインが1枚の合計3枚のコインがある。
いずれのコインも裏には何も書かれていない。
この3枚のコインを同時に投げるとき、①②の問いに答えなさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。
①表裏の出かたは全部で何通りあるか、求めなさい。
②表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。
Q
表に1と書かれたコインが1枚、2と書かれたコインが2枚、4と書かれたコインが1枚の合計4枚のコインが ある。
いずれのコインも裏には何も書かれていない。
この4枚のコインを同時に投げるとき、③、④の問いに答え なさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。
③表が出たコインに書かれた数の和が、4になる確率を求めなさい。
④表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。
この動画を見る
校受験対策・確率7
Q
表に1と書かれたコインが1枚、2と書かれたコインが1枚、4と書かれたコインが1枚の合計3枚のコインがある。
いずれのコインも裏には何も書かれていない。
この3枚のコインを同時に投げるとき、①②の問いに答えなさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。
①表裏の出かたは全部で何通りあるか、求めなさい。
②表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。
Q
表に1と書かれたコインが1枚、2と書かれたコインが2枚、4と書かれたコインが1枚の合計4枚のコインが ある。
いずれのコインも裏には何も書かれていない。
この4枚のコインを同時に投げるとき、③、④の問いに答え なさい。
ただし、いずれのコインも表裏の出かたは同様に確からしいものとする。
③表が出たコインに書かれた数の和が、4になる確率を求めなさい。
④表が出たコインに書かれた数の和が、4以上になる確率を求めなさい。
【高校受験対策/数学/難解死守1】
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・難解死守1
①$9x^4y^3 \div (-\frac{3}{5}xy^2)^3 \times \frac{y^3}{10}$を計算せよ。
➁$5\sqrt{3}-2\sqrt{18}-(\sqrt{2}-2\sqrt{3})\times \sqrt{6}$を計算せよ。
③$(\sqrt{3}-1)^2+\frac{6}{\sqrt{3}}$を計算せよ。
④$\frac{5x-2y}{3}-\frac{2x-3y}{2}-\frac{3x+2y}{5}$を計算せよ。
⑤
濃度20%の食塩水をA、濃度15%の食塩水をBとする。
60gの食塩水Aに食塩水Bを何加える と、濃度18%の食塩水となるか。
⑥$m,n$を1桁の自然数とする。
$(m+3)(n-2)$が素数となる$(m,n)$の組はいくつあるか。
⑦$3^{2019}$の一の位の数を求めよ。
⑧$(a+2b)^2+2a(a-3b)-(2a-b)^2+2(a+b)(a-b)$を因数分解せよ。
この動画を見る
高校受験対策・難解死守1
①$9x^4y^3 \div (-\frac{3}{5}xy^2)^3 \times \frac{y^3}{10}$を計算せよ。
➁$5\sqrt{3}-2\sqrt{18}-(\sqrt{2}-2\sqrt{3})\times \sqrt{6}$を計算せよ。
③$(\sqrt{3}-1)^2+\frac{6}{\sqrt{3}}$を計算せよ。
④$\frac{5x-2y}{3}-\frac{2x-3y}{2}-\frac{3x+2y}{5}$を計算せよ。
⑤
濃度20%の食塩水をA、濃度15%の食塩水をBとする。
60gの食塩水Aに食塩水Bを何加える と、濃度18%の食塩水となるか。
⑥$m,n$を1桁の自然数とする。
$(m+3)(n-2)$が素数となる$(m,n)$の組はいくつあるか。
⑦$3^{2019}$の一の位の数を求めよ。
⑧$(a+2b)^2+2a(a-3b)-(2a-b)^2+2(a+b)(a-b)$を因数分解せよ。
【高校受験対策/数学/図形34】AP=BP+CPを証明するだけ。ただそれだけなのに。。。
単元:
#数学(中学生)#中3数学#円
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形34
①
正三角形ABCが円に内接している。
図のように点Aを含まない側の弧BC上に点Pをとるとき、AP=BP+CPで あることを証明せよ。
この動画を見る
高校受験対策・図形34
①
正三角形ABCが円に内接している。
図のように点Aを含まない側の弧BC上に点Pをとるとき、AP=BP+CPで あることを証明せよ。
【高校受験対策/数学/図形33】円と相似
単元:
#数学(中学生)#中3数学#相似な図形#円
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形33
Q
右の図のように、線分ABを直径とする円$O$がある。
円$O$の周上に点$C$をとり、$BC \lt AC$である三角形$ABC$をつくる。
三角形$ACD$が$AC=AD$の直角二等辺三角形となるような点$D$をとり、辺$CD$と直径$AB$の交点を$E$とする。
また、点$D$から直径$AB$に垂線をひき、直径$AB$との交点を$F$とする。
このとき次の各問いに答えなさい。
①$\triangle ABC \backsim \triangle DAF$を証明せよ。
②$AB=10cm$、$BC=6cm$、$CA=8cm$とするとき、線分$FE$の長さを求めよ。
この動画を見る
高校受験対策・図形33
Q
右の図のように、線分ABを直径とする円$O$がある。
円$O$の周上に点$C$をとり、$BC \lt AC$である三角形$ABC$をつくる。
三角形$ACD$が$AC=AD$の直角二等辺三角形となるような点$D$をとり、辺$CD$と直径$AB$の交点を$E$とする。
また、点$D$から直径$AB$に垂線をひき、直径$AB$との交点を$F$とする。
このとき次の各問いに答えなさい。
①$\triangle ABC \backsim \triangle DAF$を証明せよ。
②$AB=10cm$、$BC=6cm$、$CA=8cm$とするとき、線分$FE$の長さを求めよ。
【高校受験対策/数学/関数46】ひし形の面積を二等分せよ。
単元:
#数学(中学生)#中3数学#2次関数
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数46
Q
右の図において、①は関数$y=x^2$、②は関数$y=ax^2$のグラフであり、$a \lt 0$である。
点A,Bは①のグラフ上にあり、点Aの$x$座標は$2$で、点Aと点Bの$y$座標は等しい。
点Cを$y$軸上にとり、点Oと点A、点Oと点B、点AとC、点Bと点Cをそれぞれ結んで、ひし形OACBをつくる。
また、②のグラフ上に点Aと$x$座標が等しい点Dをとる。
このとき次の各問いに答えなさい。
問1
2点O,Bを通る直線の式を求めよ。
問2
点Cの座標を求めよ。
問3
$x$軸上に点$(3,0)$をとる。
点$(3,0)$を通り、ひし形OACBの面積を2等分する直線の式を求めよ。
問4
点Oと点Dを結んだ線分ODを1辺とする正方形をつくる。
この正方形とひし形OACBの面積の比が$25:64$であるとき、$a$の値を求めよ。
この動画を見る
高校受験対策・関数46
Q
右の図において、①は関数$y=x^2$、②は関数$y=ax^2$のグラフであり、$a \lt 0$である。
点A,Bは①のグラフ上にあり、点Aの$x$座標は$2$で、点Aと点Bの$y$座標は等しい。
点Cを$y$軸上にとり、点Oと点A、点Oと点B、点AとC、点Bと点Cをそれぞれ結んで、ひし形OACBをつくる。
また、②のグラフ上に点Aと$x$座標が等しい点Dをとる。
このとき次の各問いに答えなさい。
問1
2点O,Bを通る直線の式を求めよ。
問2
点Cの座標を求めよ。
問3
$x$軸上に点$(3,0)$をとる。
点$(3,0)$を通り、ひし形OACBの面積を2等分する直線の式を求めよ。
問4
点Oと点Dを結んだ線分ODを1辺とする正方形をつくる。
この正方形とひし形OACBの面積の比が$25:64$であるとき、$a$の値を求めよ。
【高校受験対策/数学/確率6】「難しそうに見せているだけ」という気持ちを持って欲しい
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・確率6
Q
下の図のように、さいころの1から6までの目が1つずつ表示された6つの箱がある。
それぞれの箱の中には、表示されたさいころの目と同じ数の玉が入っている。
大小2つのさいころを同時に1回投げ、それぞれのさいころの出た目の数によって、 箱の中の玉を移動させる。
このとき下の問1、問2に答えなさい。
ただし、さいころはどの目が出ることも同様に確からしいものとする。
問1
大きいさいころの出た目と同じ目が表示された箱から玉を1個だけ取り出す。
その取り出した1個の玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき次の(1)、(2)の問いに答えよ。
(1) 空の箱ができる確率を求めよ。
(2) 6つの箱のうち、入っている玉の数が同じ箱が3つできる確率を求めよ。
問2
大きいさいころの出た目と同じ目が表示された箱から玉をすべて取り出す。
その取り出したすべての玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき、6つの箱のうち入っている玉の数が同じ箱が2つできる確率を求めよ。
この動画を見る
高校受験対策・確率6
Q
下の図のように、さいころの1から6までの目が1つずつ表示された6つの箱がある。
それぞれの箱の中には、表示されたさいころの目と同じ数の玉が入っている。
大小2つのさいころを同時に1回投げ、それぞれのさいころの出た目の数によって、 箱の中の玉を移動させる。
このとき下の問1、問2に答えなさい。
ただし、さいころはどの目が出ることも同様に確からしいものとする。
問1
大きいさいころの出た目と同じ目が表示された箱から玉を1個だけ取り出す。
その取り出した1個の玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき次の(1)、(2)の問いに答えよ。
(1) 空の箱ができる確率を求めよ。
(2) 6つの箱のうち、入っている玉の数が同じ箱が3つできる確率を求めよ。
問2
大きいさいころの出た目と同じ目が表示された箱から玉をすべて取り出す。
その取り出したすべての玉を、小さいさいころの出た目と同じ目が表示された箱に入れる。
このとき、6つの箱のうち入っている玉の数が同じ箱が2つできる確率を求めよ。
【高校受験対策/数学】図形32
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形32
Q
右の図のような、$∠ACB=90°$の直角三角形がある。
$∠ABC$の二等分線と辺$AC$との交点を$D$とする。
点$C$から辺$AB$に垂線をひき、その交点を$E$とし、線分$CE$と線$BD$との交点を$F$とする。
また点から辺$BC$に垂線をひき、その交点を$G$とし、線分$EG$と線分$BD$との交点を$H$とする。
このとき、次の各問いに答えなさい。
①$\triangle BEH \backsim \triangle BAD$であることを証明せよ。
②点$E$から線分$HF$に垂線をひき、その交点を$I$とし、 直線$EI$と辺$BC$との交点を$J$とする。
このとき$EH=FJ$であることを証明せよ。
この動画を見る
高校受験対策・図形32
Q
右の図のような、$∠ACB=90°$の直角三角形がある。
$∠ABC$の二等分線と辺$AC$との交点を$D$とする。
点$C$から辺$AB$に垂線をひき、その交点を$E$とし、線分$CE$と線$BD$との交点を$F$とする。
また点から辺$BC$に垂線をひき、その交点を$G$とし、線分$EG$と線分$BD$との交点を$H$とする。
このとき、次の各問いに答えなさい。
①$\triangle BEH \backsim \triangle BAD$であることを証明せよ。
②点$E$から線分$HF$に垂線をひき、その交点を$I$とし、 直線$EI$と辺$BC$との交点を$J$とする。
このとき$EH=FJ$であることを証明せよ。
【高校受験対策/理科】死守15
単元:
#理科(中学生)#高校入試過去問
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守15
①質量パーセント濃度が10%の食塩水がある。
この食塩水100gに水を加えて質量パーセント濃度が2%の 食塩水をつくるとき、加える水は何gか求めなさい。
②静脈にはところどころに弁がある。その弁のはたらきを簡潔に書きなさい。
③一度水に溶かした物質を再び固体として取り出すことを何というか、書きなさい。
④図1の岩石のつくりを何というか、書きなさい。
⑤図1の岩石はマグマが冷えて固まってできたものである。
どのように冷えて固まったと考えられるか、簡潔に書きなさい。
⑥銅0.8gを空気中で加熱し、完全に酸素と反応させると1.0gの酸化物が生じた。
銅2.0gを空気中で加熱し、完全に反応させたとき、反応する酸素の質量はいくらか書きなさい。
②水素と酸素が化合して水が生成する化学変化を表す化学反応式を書きなさい。
この動画を見る
高校受験対策・死守15
①質量パーセント濃度が10%の食塩水がある。
この食塩水100gに水を加えて質量パーセント濃度が2%の 食塩水をつくるとき、加える水は何gか求めなさい。
②静脈にはところどころに弁がある。その弁のはたらきを簡潔に書きなさい。
③一度水に溶かした物質を再び固体として取り出すことを何というか、書きなさい。
④図1の岩石のつくりを何というか、書きなさい。
⑤図1の岩石はマグマが冷えて固まってできたものである。
どのように冷えて固まったと考えられるか、簡潔に書きなさい。
⑥銅0.8gを空気中で加熱し、完全に酸素と反応させると1.0gの酸化物が生じた。
銅2.0gを空気中で加熱し、完全に反応させたとき、反応する酸素の質量はいくらか書きなさい。
②水素と酸素が化合して水が生成する化学変化を表す化学反応式を書きなさい。
【高校受験対策】数学-死守48
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策 数学・死守48
①$-7+3-4$を計算しなさい。
➁$\frac{1}{3} \div(-\frac{1}{6})$を計算しなさい。
③$\frac{3}{\sqrt{3}}+4\sqrt{3}-\sqrt{27}$を計算しなさい。
④$4(2x-1)-3(2x-3)$を計算しなさい。
⑤$(-xy)^2 \times 10xy^2 \div 5x^2$を計算しなさい。
⑥$(3x-1)(4x+3)$を展開しなさい。
⑦$x^2-4x+3$を因数分解しなさい。
⑧$a=-3$のとき、$a^2-2a$の値を求めなさい。
⑨等式を$V=\pi r^2h$$h$について解きなさい。
➉二次方程式$sx^2+3x-1=0$を解きなさい。
⑪
右の図1において、3点A,B,Cは点Oを中心とする円の周上の点である。
このとき、$∠x$の大きさを求めなさい。
⑫
右の図2のように、直線$l$上に2点O,Aがあり、OA=1とする。
このとき$OP=\sqrt{2}$となる点Pを、以下の指示に従って作図しなさい。
指示
・点Pは点Oよりも右側にとりなさい。
・作図に用いた線は消さずに残しておきなさい。
・作図した点Pには記号を書き入れなさい。
この動画を見る
高校受験対策 数学・死守48
①$-7+3-4$を計算しなさい。
➁$\frac{1}{3} \div(-\frac{1}{6})$を計算しなさい。
③$\frac{3}{\sqrt{3}}+4\sqrt{3}-\sqrt{27}$を計算しなさい。
④$4(2x-1)-3(2x-3)$を計算しなさい。
⑤$(-xy)^2 \times 10xy^2 \div 5x^2$を計算しなさい。
⑥$(3x-1)(4x+3)$を展開しなさい。
⑦$x^2-4x+3$を因数分解しなさい。
⑧$a=-3$のとき、$a^2-2a$の値を求めなさい。
⑨等式を$V=\pi r^2h$$h$について解きなさい。
➉二次方程式$sx^2+3x-1=0$を解きなさい。
⑪
右の図1において、3点A,B,Cは点Oを中心とする円の周上の点である。
このとき、$∠x$の大きさを求めなさい。
⑫
右の図2のように、直線$l$上に2点O,Aがあり、OA=1とする。
このとき$OP=\sqrt{2}$となる点Pを、以下の指示に従って作図しなさい。
指示
・点Pは点Oよりも右側にとりなさい。
・作図に用いた線は消さずに残しておきなさい。
・作図した点Pには記号を書き入れなさい。
【高校受験対策/理科13】火星と金星
単元:
#理科(中学生)#地学
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・理科
Q
当群馬県のある地点で、7月中旬の午後8時に火星と金星を観測したところ、火星が南東の空に、金星が西の空に見えた。
図Ⅰは観測した際のそれぞれの見えた位置を、
図Ⅱは金星、地球、火星のそれぞれの公転軌道と観測した日の地球の位置を、それぞれ模式的に示したものである。
次の問いに答えなさい。
①地球型惑星を、次のア~エからすべて選びなさい。
ア 火星
イ 水星
ウ 木星
エ 金星
➁
同じ日の午後9時にもう一度観測したところ、火星と金星の見える位置が移動していた。
火星と金星の見える位置は、図Ⅰのア~エのどの方向に移動していたか、それぞれ選びなさい。
③
この日の金星の位置として最も適切なものを、図Ⅱのa~dから選びなさい。
④
地球と火星が最も接近した日の、群馬県における火星の見え方として最も適切なものを、次のア~エから選びなさい。
ア 夕方に西の空に見える。
イ 真夜中に真南の空に見える。
ウ 真夜中に東の空に見える。
エ 夕方に真南の空に見える。
この動画を見る
高校受験対策・理科
Q
当群馬県のある地点で、7月中旬の午後8時に火星と金星を観測したところ、火星が南東の空に、金星が西の空に見えた。
図Ⅰは観測した際のそれぞれの見えた位置を、
図Ⅱは金星、地球、火星のそれぞれの公転軌道と観測した日の地球の位置を、それぞれ模式的に示したものである。
次の問いに答えなさい。
①地球型惑星を、次のア~エからすべて選びなさい。
ア 火星
イ 水星
ウ 木星
エ 金星
➁
同じ日の午後9時にもう一度観測したところ、火星と金星の見える位置が移動していた。
火星と金星の見える位置は、図Ⅰのア~エのどの方向に移動していたか、それぞれ選びなさい。
③
この日の金星の位置として最も適切なものを、図Ⅱのa~dから選びなさい。
④
地球と火星が最も接近した日の、群馬県における火星の見え方として最も適切なものを、次のア~エから選びなさい。
ア 夕方に西の空に見える。
イ 真夜中に真南の空に見える。
ウ 真夜中に東の空に見える。
エ 夕方に真南の空に見える。
【高校受験対策】理科-死守14
単元:
#理科(中学生)#高校入試過去問
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守14
① バッタやザリガニ、イカのように背骨をもたない動物を何というか、書きなさい。
② バッタとザリガニの体の外側側は、外骨格という殻でおおわれている。
外骨格のはたらきについて説明しなさい。
③図1のように、蛍光板付きクルックス管に誘導コイルを持続して大きな電圧を加えると、蛍光板に光るすじが見えた。
さらに、別の電源を用意し電極板Aが+極、電極板Bが一極となるようにつないで電圧を加えると、光るすじに変化が見られた。
その変化として最も適当なものを、ア~エから一つ選びなさい。
ア 電極板Aのほうに曲がった
イ 電極板Bのほうに曲がった
ウ 明るくなった
エ 暗くなった
④「黒色の酸化銀を加熱すると白くなった」この化学変化を、化学反応式で書きなさい。
⑤低気圧や高気圧、前線について説明した丈として正しいものを、ア~エの中から一つ選びなさい。
ア 低気圧の中心部では、下降気流となっている。
イ 高気圧はまわりよりも気圧が高いところである。
ウ 寒冷前線の近くでは乱層雲ができることが多い。
エ 温暖前線の近くでは、寒気が暖気の上をはい上がっていく。
この動画を見る
高校受験対策・死守14
① バッタやザリガニ、イカのように背骨をもたない動物を何というか、書きなさい。
② バッタとザリガニの体の外側側は、外骨格という殻でおおわれている。
外骨格のはたらきについて説明しなさい。
③図1のように、蛍光板付きクルックス管に誘導コイルを持続して大きな電圧を加えると、蛍光板に光るすじが見えた。
さらに、別の電源を用意し電極板Aが+極、電極板Bが一極となるようにつないで電圧を加えると、光るすじに変化が見られた。
その変化として最も適当なものを、ア~エから一つ選びなさい。
ア 電極板Aのほうに曲がった
イ 電極板Bのほうに曲がった
ウ 明るくなった
エ 暗くなった
④「黒色の酸化銀を加熱すると白くなった」この化学変化を、化学反応式で書きなさい。
⑤低気圧や高気圧、前線について説明した丈として正しいものを、ア~エの中から一つ選びなさい。
ア 低気圧の中心部では、下降気流となっている。
イ 高気圧はまわりよりも気圧が高いところである。
ウ 寒冷前線の近くでは乱層雲ができることが多い。
エ 温暖前線の近くでは、寒気が暖気の上をはい上がっていく。
【高校受験対策】理科-死守13
単元:
#理科(中学生)#鹿児島県公立高校入試
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守13
①図1のように質量200gの直方体の物体を水平面に置いたとき、
物体が水平面におよぼす圧力は何Paか書きなさい。
ただし、質量100gの物体にはたらく重力の大きさを1Nとする。
② 有機物以外の物質である無機物を、ア~オから2つ選びなさい。
ア 食塩
イ 砂糖
ウ プラスチック
エ ロウ
オ 鉄
③ある金属の体積と質量を測定したところ、体積が8$cm^3$、質量が72gであった。
この金属の密度は何g/$cm^3$か書きなさい。
④セキツイ動物には、まわりの温度が変化しても体温がほぼ一定に保たれる動物が含まれる。
このようなセキツイ動物を ア~カからすべて選びなさい。
ア メダカ
イ ハト
ウ ミミズ
エ ウサギ
オ イカ
カ トカゲ
⑤生態系ではミミズなどの土壌動物、菌類や細菌類などの微生物が分解者の役割もになっています。
次のア~エのうち、 細菌類の説明として最も適当なものはどれですか。
一つ選びその記号を書きなさい。
ア 1個の細胞からなる生物で、胞子によって個体がふえる。
イ 1個の細胞からなる生物で、分裂によって個体がふえる。
ウ 多くの細胞からできている生物で、胞子によって個体がふえる。
エ 多くの細胞からできている生物で、分裂によって個体がふえる。
この動画を見る
高校受験対策・死守13
①図1のように質量200gの直方体の物体を水平面に置いたとき、
物体が水平面におよぼす圧力は何Paか書きなさい。
ただし、質量100gの物体にはたらく重力の大きさを1Nとする。
② 有機物以外の物質である無機物を、ア~オから2つ選びなさい。
ア 食塩
イ 砂糖
ウ プラスチック
エ ロウ
オ 鉄
③ある金属の体積と質量を測定したところ、体積が8$cm^3$、質量が72gであった。
この金属の密度は何g/$cm^3$か書きなさい。
④セキツイ動物には、まわりの温度が変化しても体温がほぼ一定に保たれる動物が含まれる。
このようなセキツイ動物を ア~カからすべて選びなさい。
ア メダカ
イ ハト
ウ ミミズ
エ ウサギ
オ イカ
カ トカゲ
⑤生態系ではミミズなどの土壌動物、菌類や細菌類などの微生物が分解者の役割もになっています。
次のア~エのうち、 細菌類の説明として最も適当なものはどれですか。
一つ選びその記号を書きなさい。
ア 1個の細胞からなる生物で、胞子によって個体がふえる。
イ 1個の細胞からなる生物で、分裂によって個体がふえる。
ウ 多くの細胞からできている生物で、胞子によって個体がふえる。
エ 多くの細胞からできている生物で、分裂によって個体がふえる。
【高校受験対策】理科-死守12
単元:
#理科(中学生)#高校入試過去問
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守12
Q
次の文の( )に当てはまる語句を書きなさい。
①自ら光を出してかがやく太陽のような天体を( )という。
②図1の天気記号で表した天気は( )である。
③図2の記号は( )前線を表している。
④無性生殖のうち、ジャガイモやサツマイモのように、植物が体の一部から新しい個体をつくる生殖の方法を( )生殖という。
⑤自然界で生活している生物は、食べる・食べられるという関係でつながっている。
このつながりを( )連鎖という。
⑥地震が発生した場所を震源といい、震源の真上にあたる地点を( )という。
⑦10mを1秒間で移動する自動車の平均の速さは( )km/hである。
この動画を見る
高校受験対策・死守12
Q
次の文の( )に当てはまる語句を書きなさい。
①自ら光を出してかがやく太陽のような天体を( )という。
②図1の天気記号で表した天気は( )である。
③図2の記号は( )前線を表している。
④無性生殖のうち、ジャガイモやサツマイモのように、植物が体の一部から新しい個体をつくる生殖の方法を( )生殖という。
⑤自然界で生活している生物は、食べる・食べられるという関係でつながっている。
このつながりを( )連鎖という。
⑥地震が発生した場所を震源といい、震源の真上にあたる地点を( )という。
⑦10mを1秒間で移動する自動車の平均の速さは( )km/hである。
【高校受験対策】数学-関数44
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・関数44
Q
右の図で、点Oは原点であり、放物線①は関数$y=x^2$のグラフ で、直線②は関数$y=x-1$のグラフである。
点Aは直線②上の点で、その$x$座標は$-2$であり、点Pは放物線①上の点で、その$x$座標は正の数である。
点Pを通り$y$軸に平行な直線をひき、直線②との交点をQとする。
また、点Aを通り$x$軸に平行な直線をひき、直線PQとの 交点をRとする。
これについて、次の(1)、(2)の問いに答えよ。
(1)関数$y=x^2$で、$x$の変域が$-1 \leqq x \leqq 3$のとき、$y$の変域を求めよ。
(2)線分PQの長さと、線分QRの長さが等しになるとき、点Pの$x$座標はいくつか求めよ。
この動画を見る
高校受験対策・関数44
Q
右の図で、点Oは原点であり、放物線①は関数$y=x^2$のグラフ で、直線②は関数$y=x-1$のグラフである。
点Aは直線②上の点で、その$x$座標は$-2$であり、点Pは放物線①上の点で、その$x$座標は正の数である。
点Pを通り$y$軸に平行な直線をひき、直線②との交点をQとする。
また、点Aを通り$x$軸に平行な直線をひき、直線PQとの 交点をRとする。
これについて、次の(1)、(2)の問いに答えよ。
(1)関数$y=x^2$で、$x$の変域が$-1 \leqq x \leqq 3$のとき、$y$の変域を求めよ。
(2)線分PQの長さと、線分QRの長さが等しになるとき、点Pの$x$座標はいくつか求めよ。
【高校受験対策】数学-図形31
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形31
Q.
下の図のように、AB=6cm、 BC=8cm、CA=3cm、BE=12cmの三角柱ABC-DEFがある。
点Pは、点Bを出発して辺BE上を毎秒1cmの速さで動き、点で停止する。
点Qは、点Cを出 発して辺CF上を毎秒2cmの速さで動き、点Fで折り返して点Cに戻ったところで停止する。
2点P、Qが同時に出発し、出発してからの時間を$x$秒$(0 \leqq x \leqq 12)$とする。
このことについて、次の問いに答えなさい。
①$0 \leqq x \leqq 6$のとき、四角形PBCQの面積を$x$を使って表せ。
②$6 \leqq x \leqq 12$のとき、四角形PBCQの面積を$x$を使って表せ。
③線分PQが長方形BCFEの面積を2等分するときの$x$の値をすべて求めよ。
④三角DPQがDP=DQの二等辺三角形となるとき、線分PQの長さを求めよ。
この動画を見る
高校受験対策・図形31
Q.
下の図のように、AB=6cm、 BC=8cm、CA=3cm、BE=12cmの三角柱ABC-DEFがある。
点Pは、点Bを出発して辺BE上を毎秒1cmの速さで動き、点で停止する。
点Qは、点Cを出 発して辺CF上を毎秒2cmの速さで動き、点Fで折り返して点Cに戻ったところで停止する。
2点P、Qが同時に出発し、出発してからの時間を$x$秒$(0 \leqq x \leqq 12)$とする。
このことについて、次の問いに答えなさい。
①$0 \leqq x \leqq 6$のとき、四角形PBCQの面積を$x$を使って表せ。
②$6 \leqq x \leqq 12$のとき、四角形PBCQの面積を$x$を使って表せ。
③線分PQが長方形BCFEの面積を2等分するときの$x$の値をすべて求めよ。
④三角DPQがDP=DQの二等辺三角形となるとき、線分PQの長さを求めよ。
【高校受験対策】数学-死守47
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守47
①$2-9-(-4)$を計算せよ。
➁$\frac{7x+2}{3}+x-3$を計算せよ。
③$8a \div(-4a^2b)\times ab^2$を計算せよ。
④$4\sqrt{3} \div \sqrt{2}+\sqrt{54}$を計算せよ。
⑤$\frac{9}{2}\lt \sqrt{n} \lt 5$となるような自然数$n$の個数を求めよ。
⑥$y$は$x$に反比例し、$x=-3$のとき$y=8$である。
$x=6$のときの$y$の値を求めよ。
⑦面積が$15 cm^2$の三角の底辺の長さを$a$cm、高さを$b$cmとする。
このとき、$b$を$a$の式で表せ。
⑧2次方程式$x^2-ax-12=0$の解の1つが2のとき、$a$の値ともう1つの 解を求めよ。
⑨関数$y=x^2$について、$x$の変域が$a \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 9$である。
このときの$a$の値を求めよ。
⑩ある中学校の3年生70人について、夏休みに読み終えた本の冊数を調べた。
この3年生70人が読み終えた本の冊数の中央値は6.5冊であった。
この結果から必ずいえることについて通べた文として正しいものを、次のア~エから1つ選なさい。
ア 3年生70人が読み終えた本の冊数の平均は、6.5冊である。
イ 3年生70人が読み終えた本の冊数を多い順に並べたとき、多いほうから数えて35番目と36番目の冊数の平均は、6.5冊である。
ウ 3年生70人が読み終えた本の冊数のうち、最も多い冊数と最も少ない冊数の平均は6.5冊である。
エ 3年生70人が読み終えた本の冊数を度数分布表に整理すると、 6.5冊を含む階級の度数が最も多い。
この動画を見る
高校受験対策・死守47
①$2-9-(-4)$を計算せよ。
➁$\frac{7x+2}{3}+x-3$を計算せよ。
③$8a \div(-4a^2b)\times ab^2$を計算せよ。
④$4\sqrt{3} \div \sqrt{2}+\sqrt{54}$を計算せよ。
⑤$\frac{9}{2}\lt \sqrt{n} \lt 5$となるような自然数$n$の個数を求めよ。
⑥$y$は$x$に反比例し、$x=-3$のとき$y=8$である。
$x=6$のときの$y$の値を求めよ。
⑦面積が$15 cm^2$の三角の底辺の長さを$a$cm、高さを$b$cmとする。
このとき、$b$を$a$の式で表せ。
⑧2次方程式$x^2-ax-12=0$の解の1つが2のとき、$a$の値ともう1つの 解を求めよ。
⑨関数$y=x^2$について、$x$の変域が$a \leqq x \leqq 2$のとき、$y$の変域は$0 \leqq y \leqq 9$である。
このときの$a$の値を求めよ。
⑩ある中学校の3年生70人について、夏休みに読み終えた本の冊数を調べた。
この3年生70人が読み終えた本の冊数の中央値は6.5冊であった。
この結果から必ずいえることについて通べた文として正しいものを、次のア~エから1つ選なさい。
ア 3年生70人が読み終えた本の冊数の平均は、6.5冊である。
イ 3年生70人が読み終えた本の冊数を多い順に並べたとき、多いほうから数えて35番目と36番目の冊数の平均は、6.5冊である。
ウ 3年生70人が読み終えた本の冊数のうち、最も多い冊数と最も少ない冊数の平均は6.5冊である。
エ 3年生70人が読み終えた本の冊数を度数分布表に整理すると、 6.5冊を含む階級の度数が最も多い。
三平方の定理のポイントをまとめてみました。
単元:
#数学(中学生)#三平方の定理
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
冬休み前に三平方の定理を習わなかった方は
過去問などを始める前に、この動画でポイントを押さえてください。
この動画を見る
冬休み前に三平方の定理を習わなかった方は
過去問などを始める前に、この動画でポイントを押さえてください。
【高校受験対策】数学-図形30
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形30
Q
図1のように、$AB=AC$である二等辺三角形$ABC$があります。
次の各問いに答えなさい。
①
図2のように、$AB=9$、$BC=6$のとき、辺$AB$上に$BE=3$となるとなる点$E$をとり、
辺$BC$上に$\angle BAC=\angle BDE$となる点$D$をとります。
このとき線分$BD$の長さを求めなさい。
②辺$BC$に平行な直線と辺$AB$、$AC$の交点を$F$、$G$とするとき、 $△AFG$の面積が$△ABC$の面積の半分になるような点$F$および点$G$を、コンパスと定規を使って作図しなさい。
ただし作図に使った線は消さないこと。
この動画を見る
高校受験対策・図形30
Q
図1のように、$AB=AC$である二等辺三角形$ABC$があります。
次の各問いに答えなさい。
①
図2のように、$AB=9$、$BC=6$のとき、辺$AB$上に$BE=3$となるとなる点$E$をとり、
辺$BC$上に$\angle BAC=\angle BDE$となる点$D$をとります。
このとき線分$BD$の長さを求めなさい。
②辺$BC$に平行な直線と辺$AB$、$AC$の交点を$F$、$G$とするとき、 $△AFG$の面積が$△ABC$の面積の半分になるような点$F$および点$G$を、コンパスと定規を使って作図しなさい。
ただし作図に使った線は消さないこと。
【高校受験対策】数学-死守45
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守45
①$-5+2$を計算しなさい。
②$(x+2)^2$を展開しなさい。
③$y$は$x$に反比例し、比例定数は 3である。
$x$と$y$の関係を式に表しなさい。
④正五角形の内角の和は何度か、求めなさい。
⑤二次方程式 $2x^2-x=0$を解きなさい。
⑥となる自然数$a$をすべて求めなさい。
⑦直線$6x-y=1$0と$x$軸との交点をPとする。
直線$ax-2y=15$が点Pを通るとき、$a$の値を求めなさい。
⑧500円、100円、50円、10円の硬質が1枚ずつある。
この4枚の硬貨を同時に投げるとき、表が出た硬貨の合計金額が、600円以上になる確率を求めなさい。
ただしすべての硬貨の表と裏の出かたは同様に確からしいものとする。
⑨右の図は円錐の展開図です。
この展開図を組み立てたとき、側面となるおうぎ形は半径が16cm、中心角が135°である。
底面となる円の半径を求めなさい。
⑩右の表は、生徒100人の通学時間を度数分布表に表したものである。
$a:b=4:3$であるとき、中央値が含まれる階級の相対度数を求めなさい。
この動画を見る
高校受験対策・死守45
①$-5+2$を計算しなさい。
②$(x+2)^2$を展開しなさい。
③$y$は$x$に反比例し、比例定数は 3である。
$x$と$y$の関係を式に表しなさい。
④正五角形の内角の和は何度か、求めなさい。
⑤二次方程式 $2x^2-x=0$を解きなさい。
⑥となる自然数$a$をすべて求めなさい。
⑦直線$6x-y=1$0と$x$軸との交点をPとする。
直線$ax-2y=15$が点Pを通るとき、$a$の値を求めなさい。
⑧500円、100円、50円、10円の硬質が1枚ずつある。
この4枚の硬貨を同時に投げるとき、表が出た硬貨の合計金額が、600円以上になる確率を求めなさい。
ただしすべての硬貨の表と裏の出かたは同様に確からしいものとする。
⑨右の図は円錐の展開図です。
この展開図を組み立てたとき、側面となるおうぎ形は半径が16cm、中心角が135°である。
底面となる円の半径を求めなさい。
⑩右の表は、生徒100人の通学時間を度数分布表に表したものである。
$a:b=4:3$であるとき、中央値が含まれる階級の相対度数を求めなさい。
【高校受験対策】数学-死守44
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守44
①$2-(-5)$を計算せよ。
②$7+3×(-4)$を計算せよ。
③$\sqrt{45}-\frac{25}{\sqrt{5}}$を計算せよ。
④$4(2a-3b)-(a+2b)$を計算せよ。
⑤1次方程式$5x-2=2(4x-7)$を解け。
⑥2次方程式$x(x-1)=3(x+4)$を解け。
⑦次の連立方程式を解け。
$x-2y=7$
$4x+3y=6$
⑧A市におけるある日の最高気温と最低気温の温度差は19℃でした。
この日のA市の最高気温は15℃でした。最低気温は何℃求めなさい。
⑨比例式$x:x-3=\frac{3}{2}$を満たす$x$の値を求めなさい。
➉関数$y=-7x^2$グラフ上に$y$座標が-28である点があります。
この点の$x$座標を求めなさい。
⑪$y$は$x$に反比例し、$x=3$のとき$y=8$である。
$x=-2$のときの$y$の値を求めなさい。
⑫ 右の表はA中学校の1年生と3年生の通学時間を調査し、その結果を度数分布表に整理したものである。
この表をもとに、中央値が大きい方の学年とその学年の中央値がふくまれる階級を答えなさい。
この動画を見る
高校受験対策・死守44
①$2-(-5)$を計算せよ。
②$7+3×(-4)$を計算せよ。
③$\sqrt{45}-\frac{25}{\sqrt{5}}$を計算せよ。
④$4(2a-3b)-(a+2b)$を計算せよ。
⑤1次方程式$5x-2=2(4x-7)$を解け。
⑥2次方程式$x(x-1)=3(x+4)$を解け。
⑦次の連立方程式を解け。
$x-2y=7$
$4x+3y=6$
⑧A市におけるある日の最高気温と最低気温の温度差は19℃でした。
この日のA市の最高気温は15℃でした。最低気温は何℃求めなさい。
⑨比例式$x:x-3=\frac{3}{2}$を満たす$x$の値を求めなさい。
➉関数$y=-7x^2$グラフ上に$y$座標が-28である点があります。
この点の$x$座標を求めなさい。
⑪$y$は$x$に反比例し、$x=3$のとき$y=8$である。
$x=-2$のときの$y$の値を求めなさい。
⑫ 右の表はA中学校の1年生と3年生の通学時間を調査し、その結果を度数分布表に整理したものである。
この表をもとに、中央値が大きい方の学年とその学年の中央値がふくまれる階級を答えなさい。
【高校受験対策】数学-死守43
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守43
①$-6+9$の計算をしなさい。
➁$-15 \times \frac{3}{10}$の計算をしなさい。
③$\sqrt{75}-4\sqrt{3}$の計算をしなさい。
④$\frac{x+y}{2}-\frac{2x-y}{3}$の計算をしなさい。
⑤$x^2-x-56$を因数分解しなさい。
⑥10以下の素数をすべて書きなさい。
⑦下の図はある反比例のグラフである。この関係の式を求めなさい。
⑧1本$a$円のえんぴつを6本と1冊$b$円のノートを5冊買うと、代金の合計は1000円以下になる。
このときの数量関係を不等式で表しなさい。
⑨右の図はある立体の投影図である。
この立体の表面積を求めなさい。
⑩4点、A,B,C,Dが同じ円周上にあるものを次のア~エの中からすべて選び、番号を書きなさい。
この動画を見る
高校受験対策・死守43
①$-6+9$の計算をしなさい。
➁$-15 \times \frac{3}{10}$の計算をしなさい。
③$\sqrt{75}-4\sqrt{3}$の計算をしなさい。
④$\frac{x+y}{2}-\frac{2x-y}{3}$の計算をしなさい。
⑤$x^2-x-56$を因数分解しなさい。
⑥10以下の素数をすべて書きなさい。
⑦下の図はある反比例のグラフである。この関係の式を求めなさい。
⑧1本$a$円のえんぴつを6本と1冊$b$円のノートを5冊買うと、代金の合計は1000円以下になる。
このときの数量関係を不等式で表しなさい。
⑨右の図はある立体の投影図である。
この立体の表面積を求めなさい。
⑩4点、A,B,C,Dが同じ円周上にあるものを次のア~エの中からすべて選び、番号を書きなさい。
【高校受験対策】数学-図形29(番号間違えました)
単元:
#数学(中学生)#高校入試過去問(数学)
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・図形28
Q
図1のように、円$o$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、 $△ABC$をつくる。
点$C$をふくまない$\stackrel{\huge\frown}{AB}$上に、点$D$を$\angle DAB \lt \angle BAC$となるようにとり、点$B$と点$D$を線分で結ぶ。
線分$CD$上に点$E$を$∠EAC=∠DAB$となるようにとる。
①図1において、$\triangle ADE \backsim \triangle ABC$を証明しなさい。
②図2は、図1において$\angle BAC=60°$、点$C$を含まない$\stackrel{\huge\frown}{AD}$と$\stackrel{\huge\frown}{DB}$の長さの比が$3:1$となる場合を表している。
図2において、円$o$の半径が4cmのとき、$△ADC$の面積を求めなさい。
この動画を見る
高校受験対策・図形28
Q
図1のように、円$o$の円周上に3点、$A,B,C$を$AB=AC$となるようにとり、 $△ABC$をつくる。
点$C$をふくまない$\stackrel{\huge\frown}{AB}$上に、点$D$を$\angle DAB \lt \angle BAC$となるようにとり、点$B$と点$D$を線分で結ぶ。
線分$CD$上に点$E$を$∠EAC=∠DAB$となるようにとる。
①図1において、$\triangle ADE \backsim \triangle ABC$を証明しなさい。
②図2は、図1において$\angle BAC=60°$、点$C$を含まない$\stackrel{\huge\frown}{AD}$と$\stackrel{\huge\frown}{DB}$の長さの比が$3:1$となる場合を表している。
図2において、円$o$の半径が4cmのとき、$△ADC$の面積を求めなさい。
【高校受験対策】理科-死守11
単元:
#理科(中学生)#高校入試過去問
指導講師:
とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守11
Q.次の文のに当てはまる語句を書きなさい。
①流れる電流の向きと大きさが周期的に変わる電流を、直流に対し( )という。
②地球は北極と南極を結ぶ軸(地軸)を中心に回転している。この運動を地球の( )という。
③水溶液のpHの値が7より小さいとき、その水溶液は( )性である。
④熱いものにふれたとき思わず手を引っこめる反応のように、刺激に対して無意識に起こる反応を( ) という。
⑤位置エネルギーと運動エネルギーの和を( )という。
⑥種子植物のうち、アブラナやエンドウのように、子房の中に胚珠がある植物を( )植物という。
⑦大陸上や海上などで、高気圧が成長(発達)してできる、気温や湿度が広い範囲でほぼ一様な大きな 空気のかたまりを、一般に( )という。
この動画を見る
高校受験対策・死守11
Q.次の文のに当てはまる語句を書きなさい。
①流れる電流の向きと大きさが周期的に変わる電流を、直流に対し( )という。
②地球は北極と南極を結ぶ軸(地軸)を中心に回転している。この運動を地球の( )という。
③水溶液のpHの値が7より小さいとき、その水溶液は( )性である。
④熱いものにふれたとき思わず手を引っこめる反応のように、刺激に対して無意識に起こる反応を( ) という。
⑤位置エネルギーと運動エネルギーの和を( )という。
⑥種子植物のうち、アブラナやエンドウのように、子房の中に胚珠がある植物を( )植物という。
⑦大陸上や海上などで、高気圧が成長(発達)してできる、気温や湿度が広い範囲でほぼ一様な大きな 空気のかたまりを、一般に( )という。