福田の数学〜大阪大学2022年理系第2問〜三角関数と論証 - 質問解決D.B.(データベース)

福田の数学〜大阪大学2022年理系第2問〜三角関数と論証

問題文全文(内容文):
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。

2022大阪大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#大阪大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\alpha=\frac{2\pi}{7}$とする。以下の問いに答えよ。
(1)$\cos4\alpha=\cos3\alpha$であることを示せ。
(2)$f(x)=8x^3+4x^2-4x-1$とするとき、$f(\cos\alpha)=0$が成り立つことを示せ。
(3)$\cos\alpha$は無理数であることを示せ。

2022大阪大学理系過去問
投稿日:2022.04.16

<関連動画>

福田のおもしろ数学185〜8枚の硬貨から1枚の偽物を天秤を使って見抜こう

アイキャッチ画像
単元: #算数(中学受験)#推理と論証#推理と論証
指導講師: 福田次郎
問題文全文(内容文):
8枚の区別のつかない硬貨のなかに、本物よりも軽い偽物が1枚混じっている。
おもりなしの天秤を使って偽物を見つけ出すためには、最小で南海天秤を使えばよいでしょうか。
この動画を見る 

福田の数学〜京都大学2023年理系第6問〜チェビシェフの多項式と論証(PART1)

アイキャッチ画像
単元: #式の計算(単項式・多項式・式の四則計算)#数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#その他#推理と論証#推理と論証#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{6}$ pを3以上の素数とする。また、θを実数とする。
(1)$\cos3\theta$と$\cos4\theta$を$\cos\theta$の式として表せ。
(2)$\cos\theta$=$\frac{1}{p}$のとき、θ=$\frac{m}{n}$・$\pi$となるような正の整数m,nが存在するか否かを理由をつけて判定せよ。

チェビシェフの多項式
$\cos n\theta$=$T_n$($\cos\theta$)を満たすn次の多項式$T_n(x)$が存在し、その係数はすべて整数であり、最高次の係数が$2^{n-1}$である。
これが、すべての自然数nについて成り立つことを数学的帰納法で証明せよ。

2023京都大学理系過去問
この動画を見る 

福田のおもしろ数学185〜8枚の硬貨から1枚の偽物を天秤を使って見抜こう

アイキャッチ画像
単元: #算数(中学受験)#推理と論証#推理と論証
指導講師: 福田次郎
問題文全文(内容文):
\(8\)枚の区別のつかない硬貨のなかに、本物よりも軽い偽物が\(1\)枚混じっている。
おもりなしの天秤を使って偽物を見つけ出すためには、
最小で何回天秤を使えばよいでしょうか。
この動画を見る 

2024年市川中算数大問①(1)~(5)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#過去問解説(学校別)#文章題#売買損益と食塩水#平面図形#角度と面積#場合の数#場合の数#推理と論証#推理と論証#市川中学
指導講師: 重吉
問題文全文(内容文):
次の問いに答えなさい。
(1) $2-(\dfrac{7}{2}\times0.8-1)\div6+\dfrac{4}{15}-\dfrac{1}{20}$を計算しなさい。

(2) 4 %の食塩水110 gに食塩を10 g加えてよくかきまぜたあと、できた食塩水を10 g捨てます。その後、水を何gか加えてよくかきまぜたところ、4 %の食塩水ができました。このとき、水を何g加えたか求めなさい。

(3) 1組から4組まである学校に通っているA,B,C,Dの4人が次のように話しています。このとき、Aの今年の組を答えなさい。ただし、昨年、今年ともにA,B,C,Dの四人のうち、どの二人も同じ組にはいないものとします。

A「四人中三人は昨年と今年で違う組になったね」
B「僕は昨年も今年も偶数組組だった」
C「私は昨年も今年も同じ組だったわ」
D「私は昨年4組だった」

(4) 次のような、一列目と二列目は二人がけ、三列目は三人がけの七人乗りの車に、大人三人、子ども四人が乗るときの座り方を考えます。運転席には大人が座り、各列とも、子どもが座る隣に最低一人の大人が座るとき、座り方は何通りあるか答えなさい。

(5)次の図は半径2 cmの円で、円周上の点は円周を12等分する点です。1辺が1 cmの正方形をA、1辺が1 cmの正三角形をBとするとき、灰色部分の面積は、Aが$\Boxed{あ}$枚分の面積とBが$\Boxed{い}$枚分の面積の合計になります。$\Boxed{あ}$と$\Boxed{い}$に当てはまる数をそれぞれ答えなさい。
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第2問(3)〜平方数を3で割った余りに関する論証

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#推理と論証#推理と論証#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{2}}$(3)次の2つの命題を証明せよ。
$(\textrm{i})$整数nが3の倍数でないならば、$n^2$を3で割った時の余りは1である。
$(\textrm{ii})$3つの整数$x,y,z$が等式$x^2+y^2=z^2$を満たすならば、
xとyの少なくとも一方は3の倍数である。

2022慶應義塾大学看護医療学科過去問
この動画を見る 
PAGE TOP