2023年共通テスト数学2B講評【まさかの和積の公式登場】 - 質問解決D.B.(データベース)

2023年共通テスト数学2B講評【まさかの和積の公式登場】

問題文全文(内容文):
2023年共通テスト「和積の公式」の講評です。
※問題文は動画内参照
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: ユーテラ授業チャンネル【YouTubeの寺子屋】
問題文全文(内容文):
2023年共通テスト「和積の公式」の講評です。
※問題文は動画内参照
投稿日:2023.01.16

<関連動画>

【数学IIB】コレだけやれば50点はとれます【最短で50点突破】(共通テスト)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#センター試験・共通テスト関連#共通テスト#数学(高校生)#数B
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学IIB】点数獲得できる勉強法紹介動画です
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題2(1)。2次関数の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#微分法と積分法#接線と増減表・最大値・最小値#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} (1)座標平面上で、次の二つの2次関数のグラフについて考える。\\
\\
y=3x^2+2x+3 \ldots① y=2x^2+2x+3 \ldots②\\
\\
①、②の2次関数のグラフには次の共通点がある。\\
\\
共通点:・y軸との交点のy座標は\boxed{\ \ ア\ \ } である。\\
・y軸との交点における接線の方程式はy=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ } である。\\
\\
次の⓪~⑤の2次関数のグラフのうち、y軸との交点における接線が\\
y=\boxed{\ \ イ\ \ }\ x+\boxed{\ \ ウ\ \ }となるものは\\
\boxed{\ \ エ\ \ }である。\\
\\
\boxed{\ \ エ\ \ }の解答群\\
⓪y=3x^2-2x-3 ①y=-3x^2+2x-3 ②y=2x^2+2x-3\\
③y=2x^2-2x+3 ④y=-x^2+2x+3 ⑤y=-x^2-2x+3\\
\\
a,b,cを0でない実数とする。\\
曲線y=ax^2+bx+c上の点(0,\boxed{\ \ オ\ \ })における接線をlとすると、\\
その方程式はy=\boxed{\ \ カ\ \ }\ x+\boxed{\ \ キ\ \ } である。\\
\\
直線lとx軸との交点のx座標は\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}である。\\
\\
a,b,cが正の実数であるとき、曲線y=ax^2+bx+cと\\
直線lおよび直線x=\frac{\boxed{\ \ クケ\ \ }}{\boxed{\ \ コ\ \ }}で囲まれた図形の\\
面積をSとするとS=\frac{ac^{\boxed{サ}}}{\boxed{\ \ シ\ \ }b^{\boxed{ス}}} \ldots③ である。\\
\\
③において、a=1とし、Sの値が一定となるように正の実数b,cの値を変化させる。\\
このとき、bとcの関係を表すグラフの概形は\boxed{\ \ セ\ \ }である。\\
(※\boxed{\ \ セ\ \ }の選択肢は動画参照)
\end{eqnarray}

2022共通テスト数学過去問
この動画を見る 

共通テスト第2日程2021年数学詳しい解説〜共通テスト第2日程2021年IA第1問〜2次関数と三角比

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#2次関数#図形と計量#一次不等式(不等式・絶対値のある方程式・不等式)#2次方程式と2次不等式#2次関数とグラフ#三角比(三角比・拡張・相互関係・単位円)#三角比への応用(正弦・余弦・面積)#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1] $a,b$を定数とするとき、$x$についての不等式
$|ax-b-7| \lt 3$ $\cdots$①
を考える。
(1)$a=-3,b=-2$とする。①を満たす整数全体の集合を$P$とする。
この集合$P$を、要素を書き並べて表すと
$P=\left\{\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }\right\}$
となる。ただし、$\boxed{\ \ アイ\ \ }, \boxed{\ \ ウエ\ \ }$の解答の順序は問わない。

(2)$a=\displaystyle \frac{1}{\sqrt2}$とする。
$(\textrm{i})b=1$のとき、①を満たす整数は全部で$\boxed{\ \ オ\ \ }$個である。
$(\textrm{ii})$①を満たす整数が全部で$(\boxed{\ \ オ\ \ }+1)$個であるような正の整数$b$
のうち、最小のものは$\boxed{\ \ カ\ \ }$である。

[2]平面上に2点$A,B$があり、$AB=8$である。直線$AB$上にない点$P$をとり、
$\triangle ABP$をつくり、その外接円の半径を$R$とする。
太郎さんは、図1(※動画参照)のように、コンピュータソフトを使って点$P$
をいろいろな位置に取った。
図1は、点$P$をいろいろな位置にとったときの$\triangle$の外接円をかいたものである。

(1)太郎さんは、点$P$のとり方によって外接円の半径が異なることに気づき、
次の問題1を考えることにした。

問題1:点$P$をいろいろな位置にとるとき、外接円の半径$R$が最小となる
$\triangle ABP$はどのような三角形か。
正弦定理により、$2R=\displaystyle \frac{\boxed{\ \ キ\ \ }}{\sin\angle APB}$である。よって、
Rが最小となるのは$\angle APB=\boxed{\ \ クケ\ \ }°$の三角形である。
このとき、$R=\boxed{\ \ コ\ \ }$である。


(2)太郎さんは、図2(※動画参照)のように、問題1の点$P$のとり方に
条件を付けて、次の問題2を考えた。

問題2:直線$AB$に平行な直線を$l$とし、直線l上で点$P$をいろいろな
位置にとる。このとき、外接円の半径$R$が最小となる$\triangle ABP$は
どのような三角形か。

太郎さんは、この問題を解決するために、次の構想を立てた。

問題2の解決の構想
問題1の考察から、線分$AB$を直径とする円を$C$とし、円$C$に着目
する。直線lは、その位置によって、円$C$と共有点を持つ場合と
もたない場合があるので、それぞれの場合に分けて考える。

直線$AB$と直線lとの距離を$h$とする。直線lが円$C$と共有点を
持つ場合は、$h \leqq \boxed{\ \ サ\ \ }$のときであり、共有点をもたない場合は、
$h \gt \boxed{\ \ サ\ \ }$のときである。

$(\textrm{i})h \leqq \boxed{\ \ サ\ \ }$のとき
直線$l$が円$C$と共有点をもつので、$R$が最小となる$\triangle ABP$は、
$h \lt \boxed{\ \ サ\ \ }$のとき$\boxed{\boxed{\ \ シ\ \ }}$であり、$h=\boxed{\ \ サ\ \ }$のとき直角二等辺三角形
である。

$(\textrm{ii})h \gt \boxed{\ \ サ\ \ }$のとき
線分$AB$の垂直二等分線を$m$とし、直線$m$と直線$l$との交点を$P_1$とする。
直線$l$上にあり点$P_1$とは異なる点を$P_2$とするとき$\sin\angle AP_1B$
と$\sin\angle AP_2B$の大小を考える。
$\triangle ABP_2$の外接円と直線$m$との共有点のうち、直線$AB$に関して点$P_2$
と同じ側にある点を$P_3$とすると、$\angle AP_3B \boxed{\boxed{\ \ ス\ \ }}\angle AP_2B$である。
また、$\angle AP_3B \lt \angle AP_1B \lt 90°$より$\sin \angle AP_3B \boxed{\boxed{\ \ セ\ \ }}\angle AP_1B$である。
このとき$(\triangle ABP_1$の外接円の半径$) \boxed{\boxed{\ \ ソ\ \ }} (\triangle ABP_2$の外接円の半径)
であり、$R$が最小となる$\triangle ABP$は$\boxed{\boxed{\ \ タ\ \ }}$である。

$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ タ\ \ }}$については、最も適当なものを、次の⓪~④のうち
から一つずつ選べ。ただし、同じものを繰り返し選んでもよい。
⓪鈍角三角形 ①直角三角形 ②正三角形
③二等辺三角形 ④直角二等辺三角形

$\boxed{\boxed{\ \ ス\ \ }}~\boxed{\boxed{\ \ ソ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$\lt$ ①$=$ ②$\gt$

(3)問題2の考察を振り返って、$h=8$のとき、$\triangle ABP$の外接円の半径$R$
が最小である場合について考える。このとき、$\sin\angle APB=\displaystyle \frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
であり、$R=\boxed{\ \ テ\ \ }$である。

2021共通テスト過去問
この動画を見る 

【2024年共通テスト解答速報(2日目)】日本最速解答速報LIVE|数学ⅠA→ⅡB→物理 ※冒頭7分55秒まで音声が乱れております。申し訳ございません。

アイキャッチ画像
単元: #大学入試過去問(数学)#物理#センター試験・共通テスト関連#共通テスト#大学入試過去問(物理)#数学(高校生)#理科(高校生)#大学入試解答速報#数学#共通テスト#物理#共通テスト#共通テスト
指導講師: 理数個別チャンネル
問題文全文(内容文):
10000人登録目指しています。
何卒チャンネル登録お願いします!!!

※冒頭7分55秒まで音声が乱れております。申し訳ございません。


◆解答のまとめ◆
https://note.com/kobetsu_teacher/n/nf15e55b4c121

◆出演者◆
・TAKAHASHI名人
https://www.youtube.com/playlist?list=PLdLgDY469Qr7UEbDX8OecmSefwQulR35t
・ゆう☆たろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5zKa9ZgI9StW_-cNtbBDsn
・烈's study
https://www.youtube.com/playlist?list=PLdLgDY469Qr7QbP6MrNjpltLkbkyaggpv
・理数大明神
https://www.youtube.com/playlist?list=PLdLgDY469Qr6TpcFul6_A9hu5xZ1bQjNU

◆スタッフ◆
しまだじろう
https://www.youtube.com/playlist?list=PLdLgDY469Qr5kqaeicgkr6YhPZdkMEB3k

◆ドーナツ差し入れありがとう!!◆
岡ちゃん先生
https://www.youtube.com/playlist?list=PLdLgDY469Qr4OulJQO0KGCDMdykOS6pnX

◎対数の領域の問題で間違えた方はこちらを是非見てください!
(インタビューで烈's study!先生が言っていた動画です)
https://youtu.be/ZAXcZQC_sjw

◎ベクトルで間違えた方はこちらを是非見てください!
(インタビューでゆう☆たろう先生が言っていた動画です)
https://youtu.be/CYcQZEYqXj8

produced by 質問解決DB
https://kaiketsu-db.net/

produced by 理数個別チャンネル
https://www.youtube.com/@UCdQ0y9lyNRKcbH8dv2janrw
この動画を見る 

福田の数学〜2023年共通テスト速報〜数学IIB第1問三角関数と対数〜三角不等式と対数が有理数とならない条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#指数関数と対数関数#三角関数とグラフ#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第一問
[ 1 ] 三角関数の値の大小関係について考えよう。
(1) $x=\displaystyle\frac{\pi}{6}$のとき$\sin x\boxed{\boxed{\ \ ア\ \ }}\sin 2x$であり、$x=\frac{2}{3}\pi$のとき$\sin x\boxed{\boxed{\ \ イ\ \ }}\sin 2x$である。
$\boxed{\boxed{\ \ ア\ \ }}$, $\boxed{\boxed{\ \ イ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪< ①= ②>
(2) $\sin x$と$\sin 2x$の値の大小関係を詳しく調べよう。
$\sin 2x$-$\sin x$=$\sin 2x\left(\boxed{\ \ ウ\ \ }\cos x-\boxed{\ \ エ\ \ }\right)$
であるから、$\sin 2x$-$\sin x$>0が成り立つことは
「$\sin x$>0かつ $\boxed{\ \ ウ\ \ }\cos x-\boxed{\ \ エ\ \ } \gt 0$」... ①
「$\sin x$<0かつ $\boxed{\ \ ウ\ \ }\cos x-\boxed{\ \ エ\ \ } \lt 0$」... ②
が成り立つことと同値である。$0 \leqq x \leqq 2\pi$のとき、①が成り立つようなxの値の範囲は
$0 \lt x \lt \displaystyle\frac{\pi}{\boxed{\ \ オ\ \ }}$
であり、②が成り立つようなxの値の範囲は
$\pi \lt x \lt \displaystyle\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\pi$
である。よって、$0 \leqq x \leqq 2\pi$のとき、$\sin 2x \gt \sin x$が成り立つようなxの値の範囲は
$0 \lt x \lt \displaystyle\frac{\pi}{\boxed{\ \ オ\ \ }}, \pi \lt x \lt \displaystyle\frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\pi$
である。
(3)$\sin 3x$と$\sin 4x$の値の大小関係を調べよう。
三角関数の加法定理を用いると、等式
$\sin(\alpha+\beta)$-$\sin(\alpha-\beta)$=$2\cos\alpha\sin\beta$...③
が得られる。$\alpha+\beta=4x$, $\alpha-\beta=3x$を満たす$\alpha$, $\beta$に対して③を用いることにより、$\sin 4x-\sin 3x \gt 0$が成り立つことは
「$\cos\boxed{\boxed{\ \ ク\ \ }} \gt 0$ かつ $\sin\boxed{\boxed{\ \ ケ\ \ }} \gt 0$」...④
または
「$\cos\boxed{\boxed{\ \ ク\ \ }} \lt 0$ かつ $\sin\boxed{\boxed{\ \ ケ\ \ }} \lt 0$」...⑤
が成り立つことと同値であることがわかる。
$0 \leqq x \leqq \pi$のとき、④,⑤により、$\sin 4x$>$\sin 3x$が成り立つようなxの値の範囲は
$0 \leqq x \leqq \displaystyle\frac{\pi}{\boxed{\ \ コ\ \ }}$, $\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}\pi \lt x \lt \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\pi$
である。
$\boxed{\boxed{\ \ ク\ \ }}$, $\boxed{\boxed{\ \ ケ\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪0 ①x ②2x ③3x
④4x ⑤5x ⑥6x ⑦$\frac{x}{2}$ 
⑧$\frac{3}{2}x$ ⑨$\frac{5}{2}x$ ⓐ$\frac{7}{2}x$ ⓑ$\frac{9}{2}x$
(4)(2), (3)の考察から、$0 \leqq x \leqq \pi$のとき、$\sin 3x \gt \sin 4x \gt \sin 2x$が成り立つようなxの値の範囲は
$\displaystyle\frac{\pi}{\boxed{\ \ コ\ \ }}$ $\lt$ $\displaystyle\frac{\pi}{\boxed{\ \ ソ\ \ }}$, $\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\pi \lt x \lt \frac{\boxed{\ \ タ\ \ }}{\boxed{\ \ チ\ \ }}\pi$
であることがわかる。
[ 2 ]
(1)$a \gt 0$, $a \ne 1$, $b \gt 0$のとき、$\log_ab=x$とおくと、$\boxed{\boxed{\ \ ツ\ \ }}$が成り立つ。
$\boxed{\boxed{\ \ ツ\ \ }}$の解答群
⓪$x^a=b$ ①$x^b=a$ ②$a^x=b$
③$b^x=a$ ④$a^b=x$ ⑤$b^a=x$
(2)様々な対数の値が有理数か無理数かについて考えよう。
(i)$\log_5 25=\boxed{\ \ テ\ \ }$, $\log_9 27=\displaystyle\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$であり、どちらも有理数である。
(ii)$\log_2 3$が有理数と無理数のどちらかであるかを考えよう。
$\log_2 3$が有理数であると仮定すると、$\log_2 3$>0であるので、二つの自然数p, qを用いて$\log_2 3=\displaystyle\frac{p}{q}$と表すことができる。このとき、(1)により$\log_2 3=\displaystyle\frac{p}{q}$は$\boxed{\boxed{\ \ ニ\ \ }}$と変形できる。いま、2は偶数であり3は奇数であるので、$\boxed{\boxed{\ \ ニ\ \ }}$を満たす自然数p, qは存在しない。
したがって、$\log_2 3$は無理数であることがわかる。
(iii)a, bを2以上の自然数とするとき、(ii)と同様に考えると、「$\boxed{\boxed{\ \ ヌ\ \ }}$ならば$\log_a b$は常に無理数である」ことがわかる。
$\boxed{\boxed{\ \ ヌ\ \ }}$の解答群
⓪aが偶数 ①bが偶数 ②aが奇数 
③bが奇数 ④aとbがともに偶数、またはaとbがともに奇数 ⑤aとbのいずれか一方が偶数で、もう一方が奇数

2023共通テスト過去問
この動画を見る 
PAGE TOP