最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第1問 - 質問解決D.B.(データベース)

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第1問

問題文全文(内容文):
${\large第1問}$
[1]$a$を定数とする。
(1)直線$l:y=(a^2-2a-8)x+a$ の傾きが負となるのは、$a$の値の範囲が

$\boxed{\ \ アイ\ \ } \lt a \lt \boxed{\ \ ウ\ \ }$

のときである。

(2)$a^2-2a-8 \ne 0$とし、(1)の直線$l$と$x$軸との交点の$x$座標を$b$とする。
$a \gt 0$の場合、$b \gt 0$となるのは$\boxed{\ \ エ\ \ } \lt a \lt \boxed{\ \ オ\ \ }$のときである。
$a \leqq 0$の場合、$b \gt 0$となるのは$a \lt \boxed{\ \ カキ\ \ }$のときである。
また、$a=\sqrt3$のとき

$b=\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}-\boxed{\ \ コ\ \ }}{\boxed{\ \ サシ\ \ }}$

である。

[2]自然数$n$に関する三つの条件$p,q,r$を次のように定める。

$p:n$は$4$の倍数である
$q:n$は$6$の倍数である
$r:n$は$24$の倍数である

条件$p,q,r$の否定をそれぞれ$\bar{ p },\bar{ q },\bar{ r }$で表す。
条件$p$を満たす自然数全体の集合を$P$とし、条件$q$を満たす自然数全体
の集合を$Q$とし、条件$r$を満たす自然数全体の集合を$R$とする。自然数全体
の集合を全体集合とし、集合$P,Q,R$の補集合をそれぞれ$\bar{ P },\bar{ Q },\bar{ R }$で表す。

(1)次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑤のうちから一つ選べ。

$32 \in \boxed{\ \ ス\ \ }$である。
⓪$P \cap Q \cap R$ ①$P \cap Q \cap \bar{ R }$ ②$P \cap \bar{ Q }$
③$\bar{ P } \cap Q$ ④$\bar{ P } \cap \bar{ Q } \cap R$ ⑤$\bar{ P } \cap \bar{ Q } \cap \bar{ R }$

(2)次の$\boxed{\ \ タ\ \ }$に当てはまるものを、下の⓪~④のうちから一つ選べ。

$P \cap Q$に属する自然数のうち最小のものは$\boxed{\ \ セソ\ \ }$である。
また、$\boxed{\ \ セソ\ \ }\ \boxed{\ \ タ\ \ }\ R$である。

⓪= ①$\subset$ ②$\supset$ ③$\in$ ④$\notin$

(3)次の$\boxed{\ \ チ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。

自然数$\boxed{\ \ セソ\ \ }$は、命題$\boxed{\ \ チ\ \ }$の反例である。

⓪「($p$かつ$q$) $\implies \bar{ r }$」 ①「($p$または$q$) $\implies \bar{ r }$」 
②「$r \implies$ ($p$かつ$q$)」 ③「($p$かつ$q$) $\implies r$」 

[3]$c$を定数とする。2次関数$y=x^2$のグラフを、2点$(c,0),$ $(c+4,0)$
を通るように平行移動して得られるグラフを$G$とする。

(1)$G$をグラフにもつ2次関数は、$c$を用いて

$y=x^2-2\left(c+\boxed{\ \ ツ\ \ }\right)\ x+$$c\left(c+\boxed{\ \ テ\ \ }\right)$

と表せる。
$2$点$(3,0),$ $(3,-3)$を両端とする線分と$G$が共有点をもつような
$c$の値の範囲は

$-\boxed{\ \ ト\ \ } \leqq c \leqq \boxed{\ \ ナ\ \ },$ $\boxed{\ \ ニ\ \ } \leqq c \leqq \boxed{\ \ ヌ\ \ }$

である。

(2)$\boxed{\ \ ニ\ \ } \leqq c \leqq \boxed{\ \ ヌ\ \ }$の場合を考える。$G$が点$(3,-1)$を通る
とき、$G$は2次関数$y=x^2$のグラフを$x$軸方向に$\boxed{\ \ ネ\ \ }+\sqrt{\boxed{\ \ ノ\ \ }}$。
$y$軸方向に$\boxed{\ \ ハヒ\ \ }$だけ平行移動したものである。また、このとき
$G$と$y$軸との交点の$y$座標は$\boxed{\ \ フ\ \ }+\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$である。

2020センター試験過去問
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1]$a$を定数とする。
(1)直線$l:y=(a^2-2a-8)x+a$ の傾きが負となるのは、$a$の値の範囲が

$\boxed{\ \ アイ\ \ } \lt a \lt \boxed{\ \ ウ\ \ }$

のときである。

(2)$a^2-2a-8 \ne 0$とし、(1)の直線$l$と$x$軸との交点の$x$座標を$b$とする。
$a \gt 0$の場合、$b \gt 0$となるのは$\boxed{\ \ エ\ \ } \lt a \lt \boxed{\ \ オ\ \ }$のときである。
$a \leqq 0$の場合、$b \gt 0$となるのは$a \lt \boxed{\ \ カキ\ \ }$のときである。
また、$a=\sqrt3$のとき

$b=\frac{\boxed{\ \ ク\ \ }\sqrt{\boxed{\ \ ケ\ \ }}-\boxed{\ \ コ\ \ }}{\boxed{\ \ サシ\ \ }}$

である。

[2]自然数$n$に関する三つの条件$p,q,r$を次のように定める。

$p:n$は$4$の倍数である
$q:n$は$6$の倍数である
$r:n$は$24$の倍数である

条件$p,q,r$の否定をそれぞれ$\bar{ p },\bar{ q },\bar{ r }$で表す。
条件$p$を満たす自然数全体の集合を$P$とし、条件$q$を満たす自然数全体
の集合を$Q$とし、条件$r$を満たす自然数全体の集合を$R$とする。自然数全体
の集合を全体集合とし、集合$P,Q,R$の補集合をそれぞれ$\bar{ P },\bar{ Q },\bar{ R }$で表す。

(1)次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑤のうちから一つ選べ。

$32 \in \boxed{\ \ ス\ \ }$である。
⓪$P \cap Q \cap R$ ①$P \cap Q \cap \bar{ R }$ ②$P \cap \bar{ Q }$
③$\bar{ P } \cap Q$ ④$\bar{ P } \cap \bar{ Q } \cap R$ ⑤$\bar{ P } \cap \bar{ Q } \cap \bar{ R }$

(2)次の$\boxed{\ \ タ\ \ }$に当てはまるものを、下の⓪~④のうちから一つ選べ。

$P \cap Q$に属する自然数のうち最小のものは$\boxed{\ \ セソ\ \ }$である。
また、$\boxed{\ \ セソ\ \ }\ \boxed{\ \ タ\ \ }\ R$である。

⓪= ①$\subset$ ②$\supset$ ③$\in$ ④$\notin$

(3)次の$\boxed{\ \ チ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。

自然数$\boxed{\ \ セソ\ \ }$は、命題$\boxed{\ \ チ\ \ }$の反例である。

⓪「($p$かつ$q$) $\implies \bar{ r }$」 ①「($p$または$q$) $\implies \bar{ r }$」 
②「$r \implies$ ($p$かつ$q$)」 ③「($p$かつ$q$) $\implies r$」 

[3]$c$を定数とする。2次関数$y=x^2$のグラフを、2点$(c,0),$ $(c+4,0)$
を通るように平行移動して得られるグラフを$G$とする。

(1)$G$をグラフにもつ2次関数は、$c$を用いて

$y=x^2-2\left(c+\boxed{\ \ ツ\ \ }\right)\ x+$$c\left(c+\boxed{\ \ テ\ \ }\right)$

と表せる。
$2$点$(3,0),$ $(3,-3)$を両端とする線分と$G$が共有点をもつような
$c$の値の範囲は

$-\boxed{\ \ ト\ \ } \leqq c \leqq \boxed{\ \ ナ\ \ },$ $\boxed{\ \ ニ\ \ } \leqq c \leqq \boxed{\ \ ヌ\ \ }$

である。

(2)$\boxed{\ \ ニ\ \ } \leqq c \leqq \boxed{\ \ ヌ\ \ }$の場合を考える。$G$が点$(3,-1)$を通る
とき、$G$は2次関数$y=x^2$のグラフを$x$軸方向に$\boxed{\ \ ネ\ \ }+\sqrt{\boxed{\ \ ノ\ \ }}$。
$y$軸方向に$\boxed{\ \ ハヒ\ \ }$だけ平行移動したものである。また、このとき
$G$と$y$軸との交点の$y$座標は$\boxed{\ \ フ\ \ }+\boxed{\ \ ヘ\ \ }\sqrt{\boxed{\ \ ホ\ \ }}$である。

2020センター試験過去問
投稿日:2020.01.20

<関連動画>

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第1問〜三角関数、指数対数関数、図形と方程式

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#図形と方程式#三角関数#指数関数と対数関数#指数関数#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第1問}$
[1](1)$0 \leqq \theta \lt 2\pi$のとき
$\sin\theta \gt \sqrt3\cos\left(\theta-\displaystyle \frac{\pi}{3}\right)$ $\cdots$①
となる$\theta$の値の範囲を求めよう。
加法定理を用いると

$\sqrt3\cos\left(\theta-\frac{\pi}{3}\right)=$$\displaystyle\frac{\sqrt{\boxed{\ \ ア\ \ }}}{\boxed{\ \ イ\ \ }}\cos\theta+\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ イ\ \ }}\sin\theta$

である。よって、三角関数の合成を用いると、①は

$\sin\left(\theta+\displaystyle\frac{\pi}{\boxed{\ \ エ\ \ }}\right) \lt 0$

と変形できる。したがって、求める範囲は

$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}\pi \lt \theta \lt \frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}\pi$

である。

(2)$0 \leqq \theta \leqq \displaystyle\frac{\pi}{2}$とし、$k$を実数とする。$\sin\theta$と$\cos\theta$は$x$の2次方程式
$25x^2-35x+k=0$の解であるとする。このとき、解と係数の関係に
より$\sin\theta+\cos\theta$と$\sin\theta\cos\theta$の値を考えれば、$k=\boxed{\ \ ケコ\ \ }$で
あることがわかる。

さらに、$\theta$が$\sin\theta \geqq \cos\theta$を満たすとすると、$\sin\theta=\displaystyle\frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }},$
$\cos\theta=\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。このとき、$\theta$は$\boxed{\ \ ソ\ \ }$を満たす。
$\boxed{\ \ ソ\ \ }$に当てはまるものを、次の⓪~⑤のうちから一つ選べ。
⓪$0 \leqq \theta \lt \displaystyle\frac{\pi}{12}$

①$\displaystyle\frac{\pi}{12} \leqq \theta \lt \displaystyle\frac{\pi}{6}$

②$\displaystyle\frac{\pi}{6} \leqq \theta \lt \displaystyle\frac{\pi}{4}$

③$\displaystyle\frac{\pi}{4} \leqq \theta \lt \displaystyle\frac{\pi}{3}$

④$\displaystyle\frac{\pi}{3} \leqq \theta \lt \displaystyle\frac{5}{12}\pi$

⑤$\displaystyle\frac{5}{12}\pi \leqq \theta \leqq \displaystyle\frac{\pi}{2}$


[2](1)$t$は正の実数であり、$t^{\displaystyle\frac{1}{3}}-t^{-\displaystyle\frac{1}{3}}=-3$を満たすとする。このとき

$t^{\displaystyle\frac{2}{3}}+t^{-\displaystyle\frac{2}{3}}=\boxed{\ \ タチ\ \ }$

である。さらに

$t^{\frac{1}{2}}+t^{-\frac{1}{2}}=\sqrt{\boxed{\ \ ツテ\ \ }}, $$t-t^{-1}=\boxed{\ \ トナニ\ \ }$

である。

(2)$x,y$は正の実数とする。連立方程式
$\begin{eqnarray}
\left\{
\begin{array}{l}
\log_3(x\sqrt y) \leqq 5 \cdots②\\
\log_{81}\frac{y}{x^3} \leqq 1 \cdots③
\end{array}
\right.
\end{eqnarray}$

について考える。
$X=\log_3x,$ $Y=\log_3y$とおくと、②は
$\boxed{\ \ ヌ\ \ }\ X+Y \leqq \boxed{\ \ ネノ\ \ }$ $\cdots$④
と変形でき、③は
$\boxed{\ \ ハ\ \ }\ X-Y \geqq \boxed{\ \ ヒフ\ \ }$ $\cdots$⑤
と変形できる。
$X,Y$が④と⑤を満たすとき、$Y$の取り得る最大の整数の値は
$\boxed{\ \ ヘ\ \ }$である。また、$x,y$が②,③と$\log_3y=\boxed{\ \ ヘ\ \ }$を同時に
満たすとき、xの取り得る最大の整数の値は$\boxed{\ \ ホ\ \ }$である。

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IIB第3問〜数列と漸化式、余りの問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#漸化式#センター試験・共通テスト関連#センター試験#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
数列$\left\{a_n\right\}$は、初項$a_1$が$0$であり、$n=1,2,3,\cdots$のとき次の漸化式を
満たすものとする。
$a_{n+1}=$$\displaystyle \frac{n+3}{n+1}\{3a_n+3^{n+1}-$$(n+1)(n+2)\}$ $\cdots$①

(1)$a_2=\boxed{\ \ ア\ \ }$ である。

(2)$b_n=\displaystyle \frac{a_n}{3^n(n+1)(n+2)}$とおき、数列$\left\{b_n\right\}$の一般項を求めよう。
$\left\{b_n\right\}$の初項$b_1$は$\boxed{\ \ イ\ \ }$である。①の両辺を$3^{n+1}(n+2)(n+3)$で
割ると
$b_{n+1}=b_n$$+\displaystyle \frac{\boxed{\ \ ウ\ \ }}{\left(n+\boxed{\ \ エ\ \ }\right)\left(n+\boxed{\ \ オ\ \ }\right)}$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$

を得る。ただし、$\boxed{\ \ エ\ \ } \lt \boxed{\ \ オ\ \ }$とする。

したがって

$b_{n+1}-b_n=$$\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{n+\boxed{\ \ オ\ \ }}\right)$$-\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{n+1}$
である。

$n$を2以上の自然数とするとき

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ エ\ \ }}-\displaystyle \frac{\boxed{\ \ キ\ \ }}{k+\boxed{\ \ オ\ \ }}\right)$$=\displaystyle \frac{1}{\boxed{\ \ ク\ \ }}\left(\displaystyle \frac{n-\boxed{\ \ ケ\ \ }}{n+\boxed{\ \ コ\ \ }}\right)$

$\displaystyle \sum_{k=1}^{n-1}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^{k+1}=$$\displaystyle \frac{\boxed{\ \ サ\ \ }}{\boxed{\ \ シ\ \ }}-\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が成り立つことを利用すると

$b_n=\displaystyle \frac{n-\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }\left(n+\boxed{\ \ チ\ \ }\right)}$$+\displaystyle \frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}\left(\displaystyle \frac{1}{\boxed{\ \ カ\ \ }}\right)^n$

が得られる。これは$n=1$のときも成り立つ。

(3)(2)により、$\left\{a_n\right\}$の一般項は
$a_n=\boxed{\ \ ツ\ \ }^{n-\boxed{テ}}\left(n^2-\boxed{\ \ ト\ \ }\right)+$$\displaystyle \frac{\left(n+\boxed{\ \ ナ\ \ }\right)\left(n+\boxed{\ \ ニ\ \ }\right)}{\boxed{\ \ ヌ\ \ }}$

で与えられる。ただし、$\boxed{\ \ ナ\ \ } \lt \boxed{\ \ ニ\ \ }$とする。
このことから、すべての自然数$n$について、
$a_n$は整数となることが分かる。

(4)$k$を自然数とする。$a_{3k},a_{3k+1},a_{3k+2}$で割った余りはそれぞれ
$\boxed{\ \ ネ\ \ },$ $\boxed{\ \ ノ\ \ },$ $\boxed{\ \ ハ\ \ }$である。また、$\left\{a_n\right\}$の初項から
第2020項までの和を$3$で割った余りは$\boxed{\ \ ヒ\ \ }$である。

2020センター試験過去問
この動画を見る 

センター試験 数学1A満点のもっちゃんがセンター数学やるよ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次方程式と2次不等式#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^2-5x+3=0$の2解を$\alpha, \beta$
(1)$\alpha^3,\beta^3$を解にもつ2次方程式
  $x^2+px+q=0$ $p,q$の値



(2)$|\alpha-\beta|=m+d$
$(m$整数,$0 \leqq d \lt 1)$
$n \leqq 10d \lt n+1$ 整数$n$


過去問:センター試験
この動画を見る 

【数Ⅰ】集合と命題:センター試験2013年

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形に関する条件p,q,rを次のように定める。p:3つの内角がすべて異なる q:直角三角形でない r:45度の内角は1つもない。条件pの否定をpバーで表し、同様にq,rはそれぞれ条件qバー、rバーの否定を表すものとする。
[1]命題「r ⇒ (pまたはq)」の対偶は「(ア)⇒r」である。(ア)に当てはまるものを, 次の(0)~(3)のうちから1つ選べ。
(0)(pかつq) (1) (pかつq) (2) (pまたはq ) (3) (pまたはq)

[2] 次の(0)~(4)のうち、命題「(pまたはq) ⇒ r」に対する反例となっている三角形は(イ)と(ウ)である。(イ)と(ウ)に当てはまるものを、(0)~(4)のうちから1つずつ選べ。ただし、(イ)と(ウ)の解答の順序は問わない。
(0) 直角二等辺三角形 (1) 内角が30度,45度,105度の三角形 (2) 正三角形 (3) 3辺の長さが3,4,5の三角形 (4) 頂角が45度の二等辺三角形

[3] rは(pまたはq)であるための(エ) 。(エ)に当てはまるものを、次の(0)~(3)のうちから1つ選べ。
(0) 必要十分条件である (1) 必要条件であるが十分条件ではない (2) 十分条件であるが必要条件ではない (3) 必要条件でも十分条件でもない
この動画を見る 

2020年センター試験数学IA, IIB【予備校講師が分析】

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
上岡駿介先生がセンター試験数学IA,IIBの解説をします。

解説を聞いて、復習の参考にしましょう!
この動画を見る 
PAGE TOP