【数学】2023年度 第3回 高2模試 全問解説 - 質問解決D.B.(データベース)

【数学】2023年度 第3回 高2模試 全問解説

問題文全文(内容文):
大問1:小問集合
(1)実数xの2次方程式$2x^2-3x+1<0$を解け。
(2)$(3x+y)^4$を展開したときの$x^2y^2$の係数を答えよ。
(3)5つの文字A,B,C,D,Eを円形に並べる方法は何通りか。
(4)次のデータの平均値は3であるとする。1,2,3,7,a。aの値を求めよ。また、このデータの分散を求めよ。
(5)mは実数の定数とする。xy平面上の2直線$l_1:3x-y+5=0,l_2:mx+2y+4=0$が垂直になるとき、mの値を求めよ。
(6)実数xの方程式$4^x=2\sqrt{2}$を解け。
(7)実数x,yについて、x>0かつy>0であることは、xy>0であるための何条件か?
(選択肢)①必要十分条件である。②必要条件であるが、十分条件ではない。③十分条件であるが、必要条件ではない。④必要条件でも、十分条件でもない

大問2-1:高次方程式
a,bを実数の定数とする。xの3次式$P(x)=x^3+(2a-1)x^2-(a^2+2a-2)x+b$があり、3次方程式 P(x)=0がx=1を解にもつ。
(1)bをaを用いて表せ。
(2)P(x)を1次式x−1で割ったときの商をaを用いて表せ。
(3)3次方程式P(x)=0において、異なる実数解の個数が2となるようなaの値を求めよ。

大問2-2:確率
赤球1個と白球1個と青球1個の合計3個の球が入った袋がある。この袋から 1個の球を取り出しその色を確認して袋に戻すことを、繰り返し5回行う。
(1)5回とも赤球が取り出される確率を求めよ。
(2)5回のうち、赤球が2回取り出され、かつ白球が3回取り出される確率を求めよ。
(3)3種類の色の球が取り出される確率を求めよ。

大問3:図形と方程式
mを実数の定数とする。Oを原点とするxy平面上に点(2,3)を通り、傾きがmの直線がある。また、2点A(1,0),B(-1,0)があり、軸上のy>0の部分にある点Cが∠ACB=90°を満たしている。
(1)lの方程式を求めよ。また、Cの座標を求めよ。
(2)点Cと直線の距離をdとする。dをmを用いて表せ。
(3)不等式y>0の表す領域内の点Pが∠APB=45°を満たして動くとき、Pが描く図形をKとする。
(i)Kはある円の一部である。その円の中心の座標と半径を求めよ。
(ii)aを正の定数とし、Kと線分AB (両端を含む)で囲まれる領域(境界を含む)をDとする。点(x,y)がD上を動くとき、$\displaystyle\frac{y-a}{x-2}$の最大値をM(a)とする。M($\frac{1}{2}$)とM(3)をそれぞれ求めよ。

大問4:三角関数
kはk≧1を満たす定数とする。下の図のように、OB=1,∠OAB=$\frac{π}{2}$,∠AOB=θ(0<θ<$\frac{π}{4}$)である直角三角形OABがある。また、半直線OA上に点Pを、OP=2kABを満たすようにとる。
(1)辺OAの長さをを用いて表せ。また、線分OPの長さをk、θを用いて表せ。
(2)sinθcosθをsin2θを用いて表せ。また、sin²θをcos2θを用いて表せ。
(3) $BP^2$をk, sin2θ,cos2θを用いて表せ。
(4-i) k=1とする。θが0<θ<$\frac{π}{4}$の範囲を変化するとき、$BP^2$の最小値を求めよ。また、そのときのθの値を求めよ。
(4-ii) k>1とする。θが0<θ<$\frac{π}{4}$の範囲を変化するとき、$BP^2$のとり得る値の範囲をkを用いて表せ。

大問5:微分法
3次関数 $f(x)=x^3+kx^2-kx+k^2$がある。ただし、kは実数とする。
(1)f'(−1)=0とする。
(i)kの値を求めよ。
(ii)0≦x≦1におけるf(x)の最大値と最小値を求めよ。
(2)f(x)はx>0の範囲に極大値と極小値をもつとする。
(i)kのとり得る値の範囲を求めよ。
(ii)f(x)の極大値と極小値の和をS(k)とする。kの値が(2-i)で求めた範囲を変化するとき、S(k)の最大値を求めよ。

大問6:数列
数列{$a_n$}を$a_1=\frac{1}{\sqrt{2}},a_2=\sqrt{2},a_{n+2}a_{n+1}-a_{n+1}a_{n}=n+1(n=1,2,3,...)$により定める。また、数列{$b_n$}を$b_n=a_{n+1}a_{n}(n=1,2,3,・・・)$により定める。
(1)$b_1$を求めよ。また、$b_{n+1}$を$b_n$を用いて表せ。
(2)数列{$b_n$}の一般項を求めよ。
(3)$c_n=\displaystyle\frac{\sqrt{2}a_n}{n}(n=1,2,3,…)$とおく。$c_{n+1}$を$c_n$を用いて表せ。また、数列{$c_n$}の一般項を求めよ。
(4)$a_n>50$を満たす最小の正の整数の値をNとするとき、$\displaystyle \sum_{k=1}^N\frac{2k+1}{{a_{n+1}}^2{a_n}²}$を求めよ。
チャプター:

0:00 オープニング
0:05 第1問の問題文:小問集合
0:10 (1)2次不等式
1:10 (2)二項定理
2:17 (3)円順列
2:44 (4)データの分析
4:13 (5)2直線が直交
5:02 (6)指数方程式
5:48 (7)命題

7:12 第2問-iの問題文:高次方程式
7:17 (1)bをaで表す
8:28 (2)因数定理
11:53 (3)方程式の解

13:16 第2問-iiの問題文:確率
13:21 (1)5回とも赤玉
14:03 (2)2回赤、3回白
13:51 (3)3種類の色が取り出される確率

16:55 第3問の問題文:図形と方程式
17:00 (1)前半:直線の方程式
18:14 (1)後半:点Cの座標
19:00 (2)点と直線の距離
20:19 (3-i)円の軌跡
21:32 (3-ii)前半:M(1/2)の値
23:44 (3-ii)後半:M(3)の値

25:51 第4問の問題文:三角関数
25:56 (1)OAとOPの長さ
27:35 (2)2倍角
28:30 (3)余弦定理
29:52 (4-i)BP²の最小値
33:02 (4-ii)BP²の範囲

36:09 第5問の問題文:微分法
36:14 (1-i)kの値
37:12 (1-ii)最大最小
39:28 (2-i)解の配置
43:09 (2-ii)極値の和の最大値

48:34 第6問の問題文:数列
48:39 (1)bnの関係式
50:13 (2)階差数列の一般項
51:52 (3)cnの一般項
54:29 (4)式の値、BBBの利用
59:18 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)実数xの2次方程式$2x^2-3x+1<0$を解け。
(2)$(3x+y)^4$を展開したときの$x^2y^2$の係数を答えよ。
(3)5つの文字A,B,C,D,Eを円形に並べる方法は何通りか。
(4)次のデータの平均値は3であるとする。1,2,3,7,a。aの値を求めよ。また、このデータの分散を求めよ。
(5)mは実数の定数とする。xy平面上の2直線$l_1:3x-y+5=0,l_2:mx+2y+4=0$が垂直になるとき、mの値を求めよ。
(6)実数xの方程式$4^x=2\sqrt{2}$を解け。
(7)実数x,yについて、x>0かつy>0であることは、xy>0であるための何条件か?
(選択肢)①必要十分条件である。②必要条件であるが、十分条件ではない。③十分条件であるが、必要条件ではない。④必要条件でも、十分条件でもない

大問2-1:高次方程式
a,bを実数の定数とする。xの3次式$P(x)=x^3+(2a-1)x^2-(a^2+2a-2)x+b$があり、3次方程式 P(x)=0がx=1を解にもつ。
(1)bをaを用いて表せ。
(2)P(x)を1次式x−1で割ったときの商をaを用いて表せ。
(3)3次方程式P(x)=0において、異なる実数解の個数が2となるようなaの値を求めよ。

大問2-2:確率
赤球1個と白球1個と青球1個の合計3個の球が入った袋がある。この袋から 1個の球を取り出しその色を確認して袋に戻すことを、繰り返し5回行う。
(1)5回とも赤球が取り出される確率を求めよ。
(2)5回のうち、赤球が2回取り出され、かつ白球が3回取り出される確率を求めよ。
(3)3種類の色の球が取り出される確率を求めよ。

大問3:図形と方程式
mを実数の定数とする。Oを原点とするxy平面上に点(2,3)を通り、傾きがmの直線がある。また、2点A(1,0),B(-1,0)があり、軸上のy>0の部分にある点Cが∠ACB=90°を満たしている。
(1)lの方程式を求めよ。また、Cの座標を求めよ。
(2)点Cと直線の距離をdとする。dをmを用いて表せ。
(3)不等式y>0の表す領域内の点Pが∠APB=45°を満たして動くとき、Pが描く図形をKとする。
(i)Kはある円の一部である。その円の中心の座標と半径を求めよ。
(ii)aを正の定数とし、Kと線分AB (両端を含む)で囲まれる領域(境界を含む)をDとする。点(x,y)がD上を動くとき、$\displaystyle\frac{y-a}{x-2}$の最大値をM(a)とする。M($\frac{1}{2}$)とM(3)をそれぞれ求めよ。

大問4:三角関数
kはk≧1を満たす定数とする。下の図のように、OB=1,∠OAB=$\frac{π}{2}$,∠AOB=θ(0<θ<$\frac{π}{4}$)である直角三角形OABがある。また、半直線OA上に点Pを、OP=2kABを満たすようにとる。
(1)辺OAの長さをを用いて表せ。また、線分OPの長さをk、θを用いて表せ。
(2)sinθcosθをsin2θを用いて表せ。また、sin²θをcos2θを用いて表せ。
(3) $BP^2$をk, sin2θ,cos2θを用いて表せ。
(4-i) k=1とする。θが0<θ<$\frac{π}{4}$の範囲を変化するとき、$BP^2$の最小値を求めよ。また、そのときのθの値を求めよ。
(4-ii) k>1とする。θが0<θ<$\frac{π}{4}$の範囲を変化するとき、$BP^2$のとり得る値の範囲をkを用いて表せ。

大問5:微分法
3次関数 $f(x)=x^3+kx^2-kx+k^2$がある。ただし、kは実数とする。
(1)f'(−1)=0とする。
(i)kの値を求めよ。
(ii)0≦x≦1におけるf(x)の最大値と最小値を求めよ。
(2)f(x)はx>0の範囲に極大値と極小値をもつとする。
(i)kのとり得る値の範囲を求めよ。
(ii)f(x)の極大値と極小値の和をS(k)とする。kの値が(2-i)で求めた範囲を変化するとき、S(k)の最大値を求めよ。

大問6:数列
数列{$a_n$}を$a_1=\frac{1}{\sqrt{2}},a_2=\sqrt{2},a_{n+2}a_{n+1}-a_{n+1}a_{n}=n+1(n=1,2,3,...)$により定める。また、数列{$b_n$}を$b_n=a_{n+1}a_{n}(n=1,2,3,・・・)$により定める。
(1)$b_1$を求めよ。また、$b_{n+1}$を$b_n$を用いて表せ。
(2)数列{$b_n$}の一般項を求めよ。
(3)$c_n=\displaystyle\frac{\sqrt{2}a_n}{n}(n=1,2,3,…)$とおく。$c_{n+1}$を$c_n$を用いて表せ。また、数列{$c_n$}の一般項を求めよ。
(4)$a_n>50$を満たす最小の正の整数の値をNとするとき、$\displaystyle \sum_{k=1}^N\frac{2k+1}{{a_{n+1}}^2{a_n}²}$を求めよ。
投稿日:2024.10.05

<関連動画>

【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

河合塾で初のストライキ【元講師が詳細解説】

アイキャッチ画像
単元: #大学入試過去問(数学)#情報Ⅰ(高校生)#全統模試(河合塾)#英語(高校生)#大学入試過去問(英語)#全統模試(河合塾)#数学(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: Morite2 English Channel
問題文全文(内容文):
大手の河合塾で異例の**ストライキ**が発生!元講師がその詳細を解説する激震の内容だ!

予備校・学習塾業界で大手としては**初めて**となる授業中のストライキが実施された! 今回ストライキを決行したのは、河合塾ユニオンの委員長で、物理を担当する竹達さん(講師歴38年目のベテラン)だという。ストライキは授業全てではなく、90分間の授業の**最後の15分間**に限定して行われる予定だ!

ストライキの背景には、ベテラン講師の**コマ単価が10年以上変わっていない**現状がある。竹達委員長は、コマ単価が約1万7,000円という状況が続き、年収は約500万円から600万円程度だと明かしている。時給に換算すると1万円を超えると見ることもできるが、コマがなければ生活できない、安定しない職業であり、会社からの手当も少ないため、これを高いと取るか低いと取るかは人によると述べられている。

ユニオン側が要求しているのは主に3点だ。

1. **賃上げの実現**:1分あたり35円(1コマ90分で3,150円)の賃上げ。これは時給換算で2,100円の賃上げとなり、この業界では「強欲な申し出」とも聞こえるが、講師は授業準備や採点、生徒の質問対応、保護者への連絡などの業務を無給で行っており、長時間拘束されている点を訴えている。
2. **私学共済への加入**:業務委託契約の講師でも私学共済に加入できるようにすること。
3. **無期転換権の承認**:業務委託契約の講師にも5年間で無期転換を認めるよう要求。

ユニオン側は、物価高騰で実質賃金が下がる中、賃上げ要求を河合塾に一蹴されたため、今回のストライキを決行したとしている。

委員長は、「生徒に迷惑をかけたくない」という思いから授業の最後の15分間に限定したストを実施。ストライキは労働者の基本的な権利であり、業界の多くの場所で若者が疲弊している現状を見て、**「塾講師も労働者である」**ことを示すために、あえて最も象徴的な「スト」の権利を発揮し、他の塾講師がストライキを起こす際のハードルを下げる狙いがあるという。

これに対し河合塾側は、「要求項目に対する弊方の見解が理解いただけず残念」としつつも、適法に行われるストライキは受け入れ、**別の講師による補填授業**(90分間まるまる授業)を用意することで対応するとしている。

この慰霊のストライキが、予備校業界の労働環境をどう変えるのか、結果に注目が集まっている!
この動画を見る 

【数学】2020年度 第4回 K塾記述高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1(小問集合)
(1)12/(3-√5)の整数部分をa、小数部分をbとする。(i)aの値を求めよ。(ii)b²+10bの値を求めよ。
(2)aを実数の定数とする。関数f(x)=2x²-6x+aの0≦x≦1における最小値が3となるようなaの値を求めよ。
(3)三角形ABCにおいて、AB=3、BC=4、CA=2である。cos∠BACの値と三角形ABCの外接円の半径を求めよ。
(4)方程式x³-x²-x-2=0を解け。
(5)円x²+y²=4上の点(1, √3)における接線の方程式を求めよ。
(6)方程式4^x-5・2-(x+1)+24=0を解け。
大問2(三角関数)
三角形OABにおいて、OA=√3-1、OB=√2、∠AOB=3π/4が成り立っている。辺AB上(両端を含まない)に点Cをとり、直線OC上に点Dを、3点O、C、Dがこの順に並び、OD=2となるようにとる。∠AOD=θ(0<θ<3π/4)とおくとき、次の問に答えよ。
(1)三角形OADの面積をθを用いて表せ。
(2)三角形OBDの面積をsinθ、cosθを用いて表せ。
(3)Cが辺AB上を動くとき、四角形OADBの面積の最大値、および、最大値を与えるθの値を求めよ。
大問3(場合の数)
0から7までの数字が1つずつ書かれたカードが1枚ずつ、合計8枚のカードがある。この8枚のカードから3枚を選んで左から1列に並べ、2桁、もしくは3桁の整数Nを作る。例えば、012と並べたときは2桁の数で、N=12とし、123と並べたときは3桁の数で、N=123とする。
(1)2桁のN、3桁のNはそれぞれ何通りできるか。
(2)2桁のNのうち、十の位の数と一の位の数の和が7とならないものは何通りできるか。
(3)百の位が7のとき、どの2つの位の数の和も7とならないものは何通りできるか。
(4)3桁のNのうち、どの2つの位の数の和も7とならないものは何通りできるか。
大問4(微分法)
【問題文】
a、bを実数の定数とする。関数f(x)=x³+ax²+bx+a²はx=-1で極大値14をとるとする。
(1)a、bの値を求めよ。
(2)y=f(x)のグラフとx軸は異なる3点で交わり、そのx座標を小さい方から順にα、β、γとする。
(i)α>-3を示せ。
(ii)P(3,0)、B(β,0)、C(γ,0)とする。線分PBとPCの長さの大小を比較せよ。
大問5(数列)
【問題文】
2つの数列{a[n]}{b[n]}がa[1]=3/2、a[n+1]=3/2a[n]-1/2 (n=1,2,3,...) b[1]=p、b[n+1]=b[n]+p-1/2(3/2)^(n-1) (n=1,2,3,...) を満たしている。ただし、pは整数とする。
(1)a[n]をnの式で表せ。
(2)b[n]をpとnの式で表せ。
(3)c[n]=b[n]-a[n]とする。c[n]がn=4で最大となるようなpの値を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る 

【数学】2024年度第1回高2記述模試全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。

大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ

大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。

大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。


大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。

大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
この動画を見る 
PAGE TOP