大学入試問題#688「怖いのはミス」 東京女子医科大学(2015) 定積分 - 質問解決D.B.(データベース)

大学入試問題#688「怖いのはミス」 東京女子医科大学(2015) 定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\log\ 2} \displaystyle \frac{e^{5x}}{e^x+1} dx$

出典:2015年東京女子医科大学 入試問題
単元: #大学入試過去問(数学)#数学(高校生)#東京女子医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\log\ 2} \displaystyle \frac{e^{5x}}{e^x+1} dx$

出典:2015年東京女子医科大学 入試問題
投稿日:2023.12.29

<関連動画>

整数問題の難問!2つの解法を紹介【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
x^2=yz+7 \\
y^2=zx+7 \\
z^2=xy+7
\end{array}
\right.
\end{eqnarray}$

整数$(x,y,z)$を求めよ.

一橋大過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年看護医療学部第5問〜定積分で表された関数の最小値

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#不定積分・定積分#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{5}}$関数$f(x)$を$f(x)=(x+1)(|x-1|-1)+2$で定める。
(1)$y=f(x)$のグラフをかきなさい。
(2)kを実数とする。このとき、方程式$f(x)=k$が異なる3つの実数解
をもつようなkの値の範囲は$\boxed{\ \ ア\ \ }$である。
(3)曲線$y=f(x)$上の点$P(0,f(0))$における接線lの方程式は$y=\boxed{\ \ イ\ \ }$である。
また、曲線$y=f(x)$と直線lは2つの共有点をもつが、点Pとは異なる共有点を
Qとするとき、点Qのx座標は$\boxed{\ \ ウ\ \ }$である。さらに、曲線$y=f(x)$と直線lで
囲まれた図形の面積は$\boxed{\ \ エ\ \ }$である。
(4)関数$F(x)$を$F(x)=\int_0^xf(t)dt$で定める。このとき、$F'(x)=0$を満たすxを
すべて求めると$x=\boxed{\ \ オ\ \ }$である。これより、関数$F(x)$は
$x=\boxed{\ \ カ\ \ }$で最小値$\boxed{\ \ キ\ \ }$をとることがわかる。

2022慶應義塾大学看護医療学科過去問
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第5問〜ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#空間ベクトル#センター試験・共通テスト関連#共通テスト#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
1辺の長さが1の正五角形の対角線の長さをaとする。
(1)1辺の長さが1の正五角形$OA_1B_1C_1A_2$を考える。

$\angle A_1C_1B_1=\boxed{\ \ アイ\ \ }°$、$\angle C_1A_1A_2=\boxed{\ \ アイ\ \ }°$となることから、$\overrightarrow{ A_1A_2 }$と
$\overrightarrow{ B_1C_1 }$は平行である。ゆえに
$\overrightarrow{ A_1A_2 }=\boxed{\ \ ウ\ \ }\overrightarrow{ B_1C_1 }$
であるから
$\overrightarrow{ B_1C_1 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}\overrightarrow{ A_1A_2 }=\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
また、$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$は平行で、さらに、$\overrightarrow{ OA_2 }$と$\overrightarrow{ A_1C_1 }$も平行であることから
$\overrightarrow{ B_1C_1 }=\overrightarrow{ B_1A_2 }+\overrightarrow{ A_2O }+\overrightarrow{ OA_1 }+\overrightarrow{ A_1C_1 }=-\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }-\overrightarrow{ OA_2 }+\overrightarrow{ OA_1 }+
\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }=\left(\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }\right)(\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 })$
となる。したがって
$\displaystyle \frac{1}{\boxed{\ \ ウ\ \ }}=\boxed{\ \ エ\ \ }-\boxed{\ \ オ\ \ }$
が成り立つ。$a \gt 0$に注意してこれを解くと、$a=\displaystyle \frac{1+\sqrt5}{2}$を得る。


(2)下の図(※動画参照)のような、1辺の長さが1の正十二面体を考える。正十二面体とは、
どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている
へこみのない多面体のことである。

面$OA_1B_1C_1A_2$に着目する。$\overrightarrow{ OA_1 }$と$\overrightarrow{ A_2B_1 }$が平行であることから
$\overrightarrow{ OB_1 }=\overrightarrow{ OA_2 }+\overrightarrow{ A_2B_1 }=\overrightarrow{ OA_2 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_1 }$
である。また
$|\overrightarrow{ OA_2 }-\overrightarrow{ OA_1 }|^2=|\overrightarrow{ A_1A_2 }|^2=\displaystyle \frac{\boxed{\ \ カ\ \ }+\sqrt{\boxed{\ \ キ\ \ }}}{\boxed{\ \ ク\ \ }}$
に注意すると
$\overrightarrow{ OA_1 }・\overrightarrow{ OA_2 }=\displaystyle \frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
を得る。

次に、面OA_2B_2C_2A_2に着目すると
$\overrightarrow{ OB_2 }=\overrightarrow{ OA_3 }+\boxed{\ \ ウ\ \ }\overrightarrow{ OA_2 }$
である。さらに
$\overrightarrow{ OA_2 }・\overrightarrow{ OA_3 }=\overrightarrow{ OA_3 }・\overrightarrow{ OA_1 }=\frac{\boxed{\ \ ケ\ \ }-\sqrt{\boxed{\ \ コ\ \ }}}{\boxed{\ \ サ\ \ }}$
が成り立つことがわかる。ゆえに
$\overrightarrow{ OA_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ シ\ \ }}, \overrightarrow{ OB_1 }・\overrightarrow{ OB_2 }=\boxed{\boxed{\ \ ス\ \ }}$
である。

$\boxed{\boxed{\ \ シ\ \ }}, \boxed{\boxed{\ \ ス\ \ }}$の解答群(同じものを繰り返し選んでもよい。)
⓪$0$
①$1$
②$-1$
③$\displaystyle \frac{1+\sqrt5}{2}$
④$\displaystyle \frac{1-\sqrt5}{2}$
⑤$\displaystyle \frac{-1+\sqrt5}{2}$
⑥$\displaystyle \frac{-1-\sqrt5}{2}$
⑦$-\displaystyle \frac{1}{2}$
⑧$\displaystyle \frac{-1+\sqrt5}{4}$
⑨$\displaystyle \frac{-1-\sqrt5}{4}$


最後に、面$A_2C_1DEB_2$に着目する。
$\overrightarrow{ B_2D }=\boxed{\ \ ウ\ \ }\overrightarrow{ A_2C_1 }=\overrightarrow{ OB_1 }$
であることに注意すると、4点$O,B_1,D,B_2$は同一平面上にあり、四角形
$OB_1DB_2は\boxed{\boxed{\ \ セ\ \ }}$ことがわかる。

$\boxed{\boxed{\ \ セ\ \ }}$の解答群
⓪正方形である
①正方形ではないが、長方形である
②正方形ではないが、ひし形である
③長方形でもひし形でもないが、平行四辺形である
④平行四辺形ではないが、台形である
⑤台形でない

(ただし、少なくとも1組の対辺が平行な四角形を台形という)

2021共通テスト過去問
この動画を見る 

2024年度第2回記述模試高3数学解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
問題文全文(内容文):
大問1
(1) 袋の中に5枚のコインが入っており、そのうち2枚には両面にAが書かれており、残り3枚には片面にA、もう一方の面にBが書かれている。
(ⅰ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になる確率を求めよ。
(ⅱ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になった。このとき、下の面にもAが書かれている確率を求めよ。
(2) 多項式$(x-1)^{99}$を$x^2$で割った時の余りを求めよ。また、整数$99^{99}$を10000で割った時の余りを求めよ。
(3) $12^{12}$の桁数を求めよ。
(4)$\displaystyle z=\frac{-\sqrt{3}+i}{1+i}$とする。
(ⅰ)zを極形式で表せ。
(ⅱ)nを正の整数とする。$z^n$が実数となるような最小のnを求めよ。

大問2
 数列${a_n}$の初項$a_1$から第n項$a_n$までの和を$S_n$、数列${b_n}$の初項$b_1$から第n項$b_n$までの和を$T_n$をとするとき
$a_1=2、b_1=0、a_{n+1}=2T_n+2、b_{n+1}=2S_n$ が成り立つ。
(1) $a_2、b_2$を求めよ
(2) $a_{n+1}、b_{n+1}$を$a_n、b_n$を用いて表せ。
(3) 一般項$a_n$を求めよ。

大問3
 aは実数の定数とし、関数f(x)を
$f(x)=e^{-x}(a-sinx-cosx) (0<x<2π)$により定める。
(1)f(x)が極値を持つとき、aの値の範囲を求めよ。
(2)f(x)が極値を2つ持つときを考える。極値の積が負となるとき、aの値の範囲を求めよ。また、極値の積が$\displaystyle \frac{-e^{-3π}}{2}$となるときのaの値を全て求めよ。

大問4
AB=1、AC=3、BC=$2\sqrt{3}$である三角形ABCがある。$\overrightarrow{AB}=\vec{b}、\overrightarrow{AC}=\vec{c}$とする。
(1) 内積$\vec{b}・\vec{c}$の値を求めよ。
(2) s,tを実数とし、$\overrightarrow{AP}=s\vec{b}+t\vec{c}$とする。AB⊥BP、AC⊥CPであるとき、s,tの値を求め、さらに|$\overrightarrow{AP}$|を求めよ。
(3)点Qが三角形ABCの外接円上を動くとき、三角形BCQの面積を最大にするQを$Q_0$とする。$\overrightarrow{AQ_0}$を$\vec{b},\vec{c}$を用いて表せ。

大問5
 $0≦x<π$において定義された関数
$f(x)=\displaystyle \frac{2sinx}{1+cosx}、g(x)=\frac{\sqrt{3}}{1+cosx}$ 
があり、曲線y=f(x)を$C_1$、曲線y=g(x)を$C_2$とする。
(1) $C_1、C_2$の共有点のx座標を求めよ
(2)(ⅰ)不定積分$\int f(x)dx$を求めよ
(ⅱ)$tan\frac{2}{x}$の導関数をcosxを用いて表せ
(3)$C_1、C_2$およびy軸の3つで囲まれる部分の面積を$S_1$とし、$C_1$と$C_2$で囲まれる部分の面積を$S_2$とする。$S_1$と$S_2$の大小を比較せよ。ただし、自然対数の底eについて、2.7<e<2.8であることは用いてよい。

大問6
正の整数Nを3で割った時の余りは2である。
(1)正の整数a,bを3で割った時の余りをそれぞれ$r_a、r_b$とする。ab=Nが成り立つとき、$r_a、r_b$の組をすべて求めよ。
(2)Nの正の約数の総和を3で割った時の余りを求めよ。
(3)Nの正の約数の逆数の総和を$\displaystyle \frac{q}{p}$(ただし、pとqはともに正の整数で最大公約数は1である)と表したとき、qは3の倍数であることを示せ。
この動画を見る 

【高校数学】ワイエルシュトラス置換って何!?毎日積分81日目~47都道府県制覇への道~【㉔三重】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#三重大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【三重大学 2009】
$\displaystyle \int_\frac{π}{3}^{\frac{π}{2}}\frac{1}{1+sinθ-cosθ}dθ$
この動画を見る 
PAGE TOP