【受験算数】割合:⑦混合前の濃度 - 質問解決D.B.(データベース)

【受験算数】割合:⑦混合前の濃度

問題文全文(内容文):
大問1
右の図のように、A、B、Cの3つの容器が あります。Aには水が200g、BとCには濃度のちがう食塩水が300gずつ入っています。ます、 Bから100gの食塩水をAに入れ、次にCから100gをBに入れ、その次にCに水を100g入れ て、それぞれよくかき混ぜるとAの食塩水の濃度は2%となり、BとCの食塩水の濃度は同じになりました。はじめに入っていた BとCの食塩水の濃度は何%ですか。

大問2
右の図のように、A、B、Cの3つの容器が あります。Aには水が300g、BとCには濃度のちがう食塩水が400gずつ入っています。ます、 Bから100gの食塩水をAに入れ、次にCから100gをBに入れ、その次にCに水を100g入れ て、それぞれよくかき混ぜるとAの食塩水の濃度は2%となり、BとCの食塩水の濃度は同じになりました。はじめに入っていた BとCの食塩水の濃度は何%ですか。
チャプター:

0:00 オープニング
0:10 大問1
9:09 大問2

単元: #算数(中学受験)#文章題#売買損益と食塩水
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 受験算数の森
問題文全文(内容文):
大問1
右の図のように、A、B、Cの3つの容器が あります。Aには水が200g、BとCには濃度のちがう食塩水が300gずつ入っています。ます、 Bから100gの食塩水をAに入れ、次にCから100gをBに入れ、その次にCに水を100g入れ て、それぞれよくかき混ぜるとAの食塩水の濃度は2%となり、BとCの食塩水の濃度は同じになりました。はじめに入っていた BとCの食塩水の濃度は何%ですか。

大問2
右の図のように、A、B、Cの3つの容器が あります。Aには水が300g、BとCには濃度のちがう食塩水が400gずつ入っています。ます、 Bから100gの食塩水をAに入れ、次にCから100gをBに入れ、その次にCに水を100g入れ て、それぞれよくかき混ぜるとAの食塩水の濃度は2%となり、BとCの食塩水の濃度は同じになりました。はじめに入っていた BとCの食塩水の濃度は何%ですか。
投稿日:2024.11.27

<関連動画>

中学受験算数「底辺が等しい三角形の面積比」小学4年生~6年生対象【毎日配信】

アイキャッチ画像
単元: #算数(中学受験)#平面図形#角度と面積
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
第50回底辺が等しい三角形の面積比

例題
次の図について BD: DC = 1/2 :FB=3:2です。

(1)三角形ABG,三角形BCG、三角ACGの面積比を 最も簡単な整数の比で表しなさい。

(2) AE: ECを最も簡単な整数の比で表しなさい。

(3) AG:GDを最も簡単な整数の比で表しなさい。
この動画を見る 

これなにπ?

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#数の性質その他
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
πが無理数であることを動画で証明します。
この動画を見る 

【小6算数手元解説】受験算数 速さ⑮【問題文は概要欄】

アイキャッチ画像
単元: #算数(中学受験)#速さ#旅人算・通過算・流水算
教材: #SPX#中学受験教材#6年算数D-支援
指導講師: 理数個別チャンネル
問題文全文(内容文):
A町とB町とを結ぶ33kmの道が1本あり、この道を中村君はA町からB町まで、 上田君はB町からA町まで歩きます。中村君は毎時9kmの速さで20分歩いては10分 休む歩き方をくり返します。上田君は毎時6kmの速さで歩き、途中休みません。
次の問いに答えなさい。
(1) 中村君はA町からB町まで行くのに何時間何分かかりますか。
(2) 中村君と上田君が同時に出発すると、2人が出会うまでに何時間何分かかりますか。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第2問(3)〜n進法

アイキャッチ画像
単元: #計算と数の性質#数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#規則性(周期算・方陣算・数列・日暦算・N進法)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$ 
(3)$n$進法で$2021_{(n)}$と表される数が、素数であるような$n$の最小値を十進法で表すと$\boxed{\ \ コ\ \ }$となり、合成数である(素数ではない)ような$n$の最小値を十進法で表すと$\boxed{\ \ サ\ \ }$となる。
この動画を見る 

2025年桜蔭中入試算数大問① 中学受験指導歴20年プロのじっくり解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#桜蔭中学
指導講師: 重吉
問題文全文(内容文):
大問1
(1)
\[
\left( \frac{15}{7} + 0.6 \right) \times \boxed{\text{ア}} + 6 \frac{7}{13} - \frac{19}{91} = 9
\]

(2) 底面が正方形の直方体Pと、円柱Qがあります。2つの立体の高さは同じです。図のように、 直方体Pには底面のAからBへ、円柱Qには底面のCからDへ、長さが最も短くなるように側面を1周させて糸を巻きつけたところ、2つの立体に巻きつけた糸の長さは同じとなりました。
① 直方体Pの底面の1辺の長さは、円柱Qの底面の半径の$\boxed{\text{イ}}$倍です。
② 直方体Pの体積は、円柱の体積の$\boxed{\text{ウ}}$倍です。
※図は動画内参照

(3) ある整数nを4で割った余りを(n),7で割った余りを [n] と表すことにします。
たとえば、 6÷4 = 1 余り2なので(6)=2
      6÷7 = 0 余り6なので [6] =6 です。
① (n)= 3 である1以上の整数nについて考えます。
小さい順に並べたとき、2025番目に来る数は$\boxed{\text{エ}}$です。また、1番目から2025番目までの数のうち、 [n] = 5 となる数は $\boxed{\text{オ}}$個あります。
② 1から100までの整数のうち、 (n)= [n] となる整数は $\boxed{\text{カ}}$個あります。
この動画を見る 
PAGE TOP