【高校受験対策】数学-図形18 - 質問解決D.B.(データベース)

【高校受験対策】数学-図形18

問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
単元: #数学(中学生)#中1数学#中2数学#中3数学#円#平面図形#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の図1のような$\triangle ABC$があります。
点$D、E$はそれぞれ辺$AB、BC$上の点で、$\angle BDE =\angle ACB$です。
$AD = 2cm 、 DB = 8cm 、 BE = 6cm$のとき、$EC$の長さを求めなさい。

② 右の図2は、正方形$ABCD$と、おうぎ形$BAC$、おうぎ形$CBD$を組み合わせたものです。
点$E$は$\stackrel{\huge\frown}{AC}$と$\stackrel{\huge\frown}{BD}$との交点です。
正方形$ABCD$の1辺の長さが$12cm$のとき、$\stackrel{\huge\frown}{BE}$の長さを求めなさい。 ただし、円周率は$\pi$とします。

③右の図3のような四角形$ABCD$があり、対角線$AC$と対角線$BD$との交点を$E$とする。
線分$BE$上に、2点$B、E$と異なる点$F$をとり、直線$AF$と辺$BC$との交点を$G$とする。
四角形$ABCD$の面積が$50cm²$、$△AGC$の面積が$30cm$、
$BF:FD=3:4、AF:FG=2:1$であるとき、$△ACD$の面積は何$cm^2$か。

図は動画内参照
投稿日:2017.12.26

<関連動画>

中1数学「数量を表す文字式①(代金・整数・平均)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
数量を表す文字式に関して解説していきます。
この動画を見る 

【中1 数学】中1-74 円とおうぎ形の性質③ ~おうぎ形編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図のOABを①____といい、
$\angle AOB$を②____という。

◎おうぎ形OABの面積が$5πcm^2$。

③おうぎ形OCDの面積は?

④おうぎ形OEFの面積は?

⑤右の円で、面積が$25πcm^2$のおうぎ形を作図するには
中心角を何度にすればいい?
※図は動画内参照
この動画を見る 

【中学数学】 正負の数:指数計算の注意点

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 理数個別チャンネル
問題文全文(内容文):
$-8^2$
$(-8)^2$
$(-8^2)$
それぞれの違いは??
この動画を見る 

【受験対策】  数学-図形②

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①右の[図1]のような図形を組み立てて、三角柱の形をした容器をつくりました。
この容器を立てて、中に48$cm^3$の水を入れたとき、水が容器にふれている部分の面積を 求めよう。
ただし、容器の厚みは考えないものとし、水がこぼれることもないものとします。

② 右の[図2]のように、円周上に点A、B、C、Dがあります。
ACとBDの交点をEとし、直線ABと直線CDの交点をF とします。
$\angle BAC=27°\angle AED=87°$のとき、 $\angle AFD$の大きさを求めよう。

③右の[図3]で、△ABCはAB=ACの二等辺三角形です。
辺BC上に点Dをとり、ADを折り目として折り返し、
頂点Bが移った位置をEとします。
辺BCとAEの交点をFと すると、FD=FEになりました。
$\angle BAD=42°$のとき、 $\angle ACB$の大きさを求めよう。
※図は動画内参照
この動画を見る 

中1数学「直線と平面の位置関係」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#空間図形
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
中1~直線と平面の位置関係~

例題 次の図は正六角柱です。

(1) 辺AGと平行な面は何面 ありますか。

(2)辺AGと垂直な面は何面 ありますか。

(3) 面ABCDEFと平行な辺は 何本ありますか。

(4)面ABCDEFと垂直な辺は 何本ありますか。
この動画を見る 
PAGE TOP