福田の数学〜京都大学2024年理系第4問〜その項が偶数であるかないかで定義が変わる漸化式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年理系第4問〜その項が偶数であるかないかで定義が変わる漸化式

問題文全文(内容文):
$\Large\boxed{4}$ 与えられた自然数$a_0$に対して、自然数からなる数列$a_0$,$a_1$,$a_2$, ... を次のように定める。
$a_{n+1}$=$\left\{\begin{array}{1}
\displaystyle\frac{a_n}{2}   (a_nが偶数のとき)\\
\displaystyle\frac{3a_n+1}{2} (a_nが奇数のとき)\\
\end{array}\right.$
次の問いに答えよ。
(1)$a_0$,$a_1$,$a_2$,$a_3$がすべて奇数であるような最小の自然数$a_0$を求めよ。
(2)$a_0$,$a_1$,...,$a_{10}$がすべて奇数であるような最小の自然数$a_0$を求めよ。
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 与えられた自然数$a_0$に対して、自然数からなる数列$a_0$,$a_1$,$a_2$, ... を次のように定める。
$a_{n+1}$=$\left\{\begin{array}{1}
\displaystyle\frac{a_n}{2}   (a_nが偶数のとき)\\
\displaystyle\frac{3a_n+1}{2} (a_nが奇数のとき)\\
\end{array}\right.$
次の問いに答えよ。
(1)$a_0$,$a_1$,$a_2$,$a_3$がすべて奇数であるような最小の自然数$a_0$を求めよ。
(2)$a_0$,$a_1$,...,$a_{10}$がすべて奇数であるような最小の自然数$a_0$を求めよ。
投稿日:2024.03.09

<関連動画>

#筑波大学(2016) #定積分 #Shorts

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \tan^3x\ dx$

出典:2016年筑波大学
この動画を見る 

福田の1.5倍速演習〜合格する重要問題066〜九州大学2017年度理系第3問〜等差数列の7の倍数になる項の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{3}}$ 初項$a_1=1$, 公差4の等差数列$\left\{a_n\right\}$を考える。以下の問いに答えよ。
(1) $\left\{a_n\right\}$の初項から第600項のうち、7の倍数である項の個数を求めよ。
(2) $\left\{a_n\right\}$の初項から第600項のうち、$7^2$の倍数である項の個数を求めよ。
(3) 初項から第n項までの積$a_1a_2\cdots a_n$が$7^{45}$の倍数となる最小の自然数nを求めよ。

2017九州大学理系過去問
この動画を見る 

平方根 津田塾大学

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nで$\sqrt{n^2-n+20}$の整数部分がnとなるのは全部でいくつ?(n:自然数)

津田塾大学
この動画を見る 

確率、等比数列 巴戦は平等な優勝決定法か?(類)東大、神戸大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
確率、等比数列 巴戦は平等な優勝決定法か?

(類)東大、神戸大
この動画を見る 

大学入試問題#67 福岡教育大学(2009) 置換積分①

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log7}(\displaystyle \frac{e^x}{1+e^x})^2dx$を計算せよ。

出典:2009年福岡教育大学 入試問題
この動画を見る 
PAGE TOP