福田の数学〜京都大学2024年理系第4問〜その項が偶数であるかないかで定義が変わる漸化式 - 質問解決D.B.(データベース)

福田の数学〜京都大学2024年理系第4問〜その項が偶数であるかないかで定義が変わる漸化式

問題文全文(内容文):
$\Large\boxed{4}$ 与えられた自然数$a_0$に対して、自然数からなる数列$a_0$,$a_1$,$a_2$, ... を次のように定める。
$a_{n+1}$=$\left\{\begin{array}{1}
\displaystyle\frac{a_n}{2}   (a_nが偶数のとき)\\
\displaystyle\frac{3a_n+1}{2} (a_nが奇数のとき)\\
\end{array}\right.$
次の問いに答えよ。
(1)$a_0$,$a_1$,$a_2$,$a_3$がすべて奇数であるような最小の自然数$a_0$を求めよ。
(2)$a_0$,$a_1$,...,$a_{10}$がすべて奇数であるような最小の自然数$a_0$を求めよ。
単元:
Warning: usort() expects parameter 1 to be array, bool given in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 102

Warning: Invalid argument supplied for foreach() in /home/kaiketsudb/kaiketsu-db.net/public_html/wp-content/themes/lightning-child-sample/single.php on line 103
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 与えられた自然数$a_0$に対して、自然数からなる数列$a_0$,$a_1$,$a_2$, ... を次のように定める。
$a_{n+1}$=$\left\{\begin{array}{1}
\displaystyle\frac{a_n}{2}   (a_nが偶数のとき)\\
\displaystyle\frac{3a_n+1}{2} (a_nが奇数のとき)\\
\end{array}\right.$
次の問いに答えよ。
(1)$a_0$,$a_1$,$a_2$,$a_3$がすべて奇数であるような最小の自然数$a_0$を求めよ。
(2)$a_0$,$a_1$,...,$a_{10}$がすべて奇数であるような最小の自然数$a_0$を求めよ。
投稿日:2024.03.09

<関連動画>

PAGE TOP