数学ゴールデン#2【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。 - 質問解決D.B.(データベース)

数学ゴールデン#2【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。

問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 10+\sqrt{ 1 } }+\sqrt{ 10+\sqrt{ 2 } }+・・・+\sqrt{ 10+\sqrt{ 99 } }}{\sqrt{ 10-\sqrt{ 1 } }+\sqrt{ 10-\sqrt{ 2 } }+・・・+\sqrt{ 10-\sqrt{ 99 } }}$を計算せよ。

出典:数学ゴールデン 数学オリンピック
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 10+\sqrt{ 1 } }+\sqrt{ 10+\sqrt{ 2 } }+・・・+\sqrt{ 10+\sqrt{ 99 } }}{\sqrt{ 10-\sqrt{ 1 } }+\sqrt{ 10-\sqrt{ 2 } }+・・・+\sqrt{ 10-\sqrt{ 99 } }}$を計算せよ。

出典:数学ゴールデン 数学オリンピック
投稿日:2022.02.12

<関連動画>

Japanese Mathematics Olympic Question 2016 数学オリンピック

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
How many possible ways are there to divide this 11×11 grid into 5 rectangles.
where one of them must not share any of its side with the original rectangle(11×11).
Do not consider any rotation or flipping.
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選問題
自然数、正の約数全ての積が$24^{240}$となるものをすべて求めよ。
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$[p][g][r]^2=[a][b][c][d][e]$
(3ケタ)$^2$=5ケタ
文字はすべて素数

出典:数学オリンピック 予選問題
この動画を見る 

モスクワ数学オリンピック 整数

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yは自然数とするとき,
$1!+2!+3!+・・・・・・+x!=y^2$を求めよ.

モスクワ数学オリンピック過去問
この動画を見る 

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 
PAGE TOP