数学ゴールデン#2【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。 - 質問解決D.B.(データベース)

数学ゴールデン#2【漫画】で紹介された数オリの問題の解答がなかったから作成してみた。

問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 10+\sqrt{ 1 } }+\sqrt{ 10+\sqrt{ 2 } }+・・・+\sqrt{ 10+\sqrt{ 99 } }}{\sqrt{ 10-\sqrt{ 1 } }+\sqrt{ 10-\sqrt{ 2 } }+・・・+\sqrt{ 10-\sqrt{ 99 } }}$を計算せよ。

出典:数学ゴールデン 数学オリンピック
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{\sqrt{ 10+\sqrt{ 1 } }+\sqrt{ 10+\sqrt{ 2 } }+・・・+\sqrt{ 10+\sqrt{ 99 } }}{\sqrt{ 10-\sqrt{ 1 } }+\sqrt{ 10-\sqrt{ 2 } }+・・・+\sqrt{ 10-\sqrt{ 99 } }}$を計算せよ。

出典:数学ゴールデン 数学オリンピック
投稿日:2022.02.12

<関連動画>

福田のおもしろ数学053〜数学オリンピックの幾何の問題〜線分の長さを求める

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#図形の性質#方べきの定理と2つの円の関係#数学オリンピック#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
DB = BC = 2 , AB = AC, 直線 AC と直線 DC は点 A, D で円 O に接している。
直線AB と円 O の交点のうち A でない方を E とし、直線 CE と円 O の交点のうち E でない方を F とする。
線分 EF の長さを求めよ。
※図は動画内参照

数学オリンピック過去問
この動画を見る 

数学オリンピック 予選の簡単な問題

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
数学オリンピック予選問題
自然数、正の約数全ての積が$24^{240}$となるものをすべて求めよ。
この動画を見る 

数学オリンピック ベラルーシ 整数

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b,c$は自然数であり,$P$は素数である.
$a+b=b(a-c)$,$c+1=P^2$なら$a+b$か$ab$は平方数であることを示せ.
この動画を見る 

Japanese Mathematics Olympic Question 2016 数学オリンピック

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#場合の数と確率#場合の数#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
How many possible ways are there to divide this 11×11 grid into 5 rectangles.
where one of them must not share any of its side with the original rectangle(11×11).
Do not consider any rotation or flipping.
この動画を見る 

練習問題35 数学オリンピックの問題 複素数を利用して証明してみた。

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数#数学オリンピック#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\cos\dfrac{\pi}{7}-\cos\dfrac{2}{7}\pi+\cos\dfrac{3}{7}\pi=\dfrac{1}{2}$
を示せ.
この動画を見る 
PAGE TOP