2023高校入試数学解説51問目 円錐の表面積 神奈川県 - 質問解決D.B.(データベース)

2023高校入試数学解説51問目 円錐の表面積 神奈川県

問題文全文(内容文):
円錐の表面積=?
*図は動画内参照

2023神奈川県
単元: #数学(中学生)#立体図形#体積・表面積・回転体・水量・変化のグラフ#立体図形その他#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
円錐の表面積=?
*図は動画内参照

2023神奈川県
投稿日:2023.02.15

<関連動画>

2024年青山学院中等部算数「底面積と体積の比」中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#文章題#単位・比と割合・比例・反比例#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師: 重吉
問題文全文(内容文):
円柱の形をした2つの容器A、Bがあります。
A、Bともに同じ一定の割合で水を入れると、入れ始めてからAは28分で、Bは36分でいっぱいになります。
今、両方の容器をいっぱいにしてから、入れるときと同じ水量で底から同時に水を出したところ12分後に2つの容器の水面の高さは等しくなりました。
AとBの底面の面積の比は何対何で、高さの比は何対何です。
この動画を見る 

福田の数学〜早稲田大学2023年教育学部第3問〜関数の増減と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立体図形#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数$a$,$b$>0に対し、$a$≦$b$の場合は$a$≦$x$≦$b$の範囲、$a$>$b$の場合は$b$≦$x$≦$a$の範囲における$y$=$\log x$のグラフを$C_{a,b}$とする。このとき、次の問いに答えよ。
(1)点(2,-1)と$C_{2,b}$上の点との距離の最小値を$b$を用いて表せ。
(2)直線$x$=$a$と直線$x$=$b$の間で、$C_{a,b}$と$x$軸によって囲まれる部分を$x$軸の周りに1回転して得られる立体の体積を$S_{a,b}$とする。$S_{1,b}$を$b$を用いて表せ。
(3)$S_{a,b}$を(2)で定義したものとする。$S_{a,a+1}$が最小値をとる$a$の値を求めよ。
この動画を見る 

積み木を積む問題の効率的な解き方はコレ!【図形問題基礎講座40】

アイキャッチ画像
単元: #算数(中学受験)#立体図形#体積・表面積・回転体・水量・変化のグラフ
指導講師: こばちゃん塾
問題文全文(内容文):
例1 1辺が1㎝の立方体を下図のように積んだ。このときの表面積は?

例2 1辺が1㎝の立方体を下図のように12個積み上げた。表面積は?

単元卒業テスト
板の上にすべての面が白色でぬられた同じ大きさの立方体を何個か積み上げました。図中の数字は真正面と真横から見える立方体の個数です。
最も少ない場合、立方体の個数は全部で何個ですか?

*図は動画内参照
この動画を見る 

2024年広尾学園中算数大問①(1)~(6)中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#計算と数の性質#いろいろな計算#規則性(周期算・方陣算・数列・日暦算・N進法)#文章題#単位・比と割合・比例・反比例#平面図形#角度と面積#立体図形#立体切断#体積・表面積・回転体・水量・変化のグラフ
指導講師: 重吉
問題文全文(内容文):
※図は動画内参照
(1) 次の計算をしなさい。
$253\div8+25.3\times3.25+11\times2.3\times5.5$

(2) $\dfrac{1}{1+\dfrac{1}{\boxed{ ア }+\dfrac{1}{\boxed{ イ }}}}=\dfrac{3}{5}$ となるように、$\boxed{ ア }$、$\boxed{ イ }$に当てはまる整数を求めなさい。

(3) 広尾小学校のある学年で、算数と国語についてそれぞれ「好きか、好きではないか」のどちらかについて調査をしました。調査の結果、算数が好きな児童の数は学年全体の人数の$\dfrac{1}{3}$、国語が好きな児童の数は学年全体の人数の$\dfrac{2}{5}$、算数も国語も好きな児童の数は算数の好きな児童の数の$\dfrac{3}{10}$であり、算数も国語も好きではない児童の数は44人でした。算数も国語も好きな児童の数を求めなさい。

(4) 時計の長針と短針について、4時と5時の間で長針と短針が反対向きに一直線になるときの時刻は4時何分か求めなさい。

(5) 右の図は、正方形の図の中に同じ大きさの四分円を4つ描いた図です。斜線部分の面積を求めなさい。ただし円周率は3.14とします。

(6) 図1のような長方形があり、上、正面、横の面をそれぞれ面ア、面イ、面ウとします。面ア、面イにそれぞれ平行な面でこの直方体を切断すると、できた4つの直方体の表面積の合計は、もとの直方体の表面積よりも1400 ㎠大きくなります(図2)。同様に面イと面ウにそれぞれ平行な面で切断すると、できた4つの直方体の表面積の表面積の合計は、もとの直方体の表面積よりも1000 ㎠大きくなり、面アと面ウにそれぞれ平行な面で切断すると、もとの直方体の表面積よりも1200 ㎠大きくなります。もとの直方体の表面積を求めなさい。
この動画を見る 

2024年青山学院中等部算数「底面積と体積の比」中学受験指導歴20年以上のプロ解説

アイキャッチ画像
単元: #算数(中学受験)#過去問解説(学校別)#文章題#単位・比と割合・比例・反比例#仕事算とニュートン算#立体図形#体積・表面積・回転体・水量・変化のグラフ#青山学院中等部
指導講師: 重吉
問題文全文(内容文):
円柱の形をした2つの容器A,Bがあります。
A,Bともに同じ一定の割合で水を入れると、入れ始めてからAは28分で、Bは36分でいっぱいになります。
今、両方の容器をいっぱいにしてから、入れるときと同じ水量で底から同時に水を出したところ12分後に2つの容器の水面の高さは等しくなりました。
AとBの底面の面積の比は$\Box:\Box$で、高さの比は$\Box:\Box$です。
この動画を見る 
PAGE TOP