【受験対策】 数学-図形③ - 質問解決D.B.(データベース)

【受験対策】  数学-図形③

問題文全文(内容文):
右の図で、△ABC,△BDEはどちらも正三角形で辺AC上に頂点Dがあります。
AB:AE=5:3のとき、次の問いに答えよう。

①$\angle ABE=54°$のとき、$\angle BDC$の大きさは?

②AD:CDを、最も簡単な整数の比で求めよう。

③△ABDの面積は四角形EBCAの面積の何倍?
※図は動画内参照
単元: #数学(中学生)#中1数学#中3数学#相似な図形#平面図形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
右の図で、△ABC,△BDEはどちらも正三角形で辺AC上に頂点Dがあります。
AB:AE=5:3のとき、次の問いに答えよう。

①$\angle ABE=54°$のとき、$\angle BDC$の大きさは?

②AD:CDを、最も簡単な整数の比で求めよう。

③△ABDの面積は四角形EBCAの面積の何倍?
※図は動画内参照
投稿日:2014.01.14

<関連動画>

【3分で別解まで分かる!】図形:長崎県~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)#長崎県公立高校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
入試問題 長崎県の公立高校

$\angle x$の大きさを求めよ。

図において、$l$と$m$は平行である。
※図は動画内参照
この動画を見る 

【TikTok】扇形の面積を一瞬で求める

アイキャッチ画像
単元: #数学(中学生)#中1数学#中3数学#円#平面図形
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
扇形の面積を一瞬で求める方法解説動画です
この動画を見る 

中1数学「正の数・負の数②(反対の性質)」【毎日配信】

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数
指導講師: 中学受験算数・高校受験数学けいたくチャンネル
問題文全文(内容文):
正の数・負の数②(反対の性質)に関して解説していきます。
この動画を見る 

【高校受験対策/数学】死守-80

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#正の数・負の数#方程式#式の計算(単項式・多項式・式の四則計算)#連立方程式#2次方程式#空間図形#1次関数#確率#2次関数#文字と式#三角形と四角形
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守80

①$-3+(-4)×5$を計算しなさい。

②$4xy÷8x×6y$を計算しなさい。

③$\frac{4x-y}{2}-(2x-3y)$を計算しなさい。

④連立方程式を解きなさい。
$5x-4y=9$
$2x-3y=5$

③下の図で、$\angle x$の大きさを求めなさい。

④地球の直径は約$12700km$です。
有効数字が$1,2,7$であるとして、この距離を整数部分が1けたの数と、10の何乗かの積の形で表すと右のようになります。
アとイにあてはまる数を書きなさい。

⑦半径が$2cm$の球の体積と表面積を求めなさい。ただし円周率は$\pi$とする。

⑧赤玉3個と白玉2個が入っている袋があります。
この袋から玉を1個取り出して色を確認して、それを袋に戻してから、もう一度玉を1個取り出して色を確認します。
このとき、2回とも同じ色の玉が出る確率を求めなさい。
ただし、袋の中は見えないものとし、どの玉が出ることも同様に確からしいものとする。

⑨関数$y=ax^2$について、$x$の変域が$-2 \leqq x \leqq 3$のとき、$y$の変域は$-3b \leqq y \leqq 0$となりました。
このとき$a$の値を求めなさい。
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第5問〜三角比と空間図形の計量

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#空間図形#図形と計量#三角比への応用(正弦・余弦・面積)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
半径$4\sqrt2$の球面S上に3点A,B,Cがあり、線分AB,BC,CAの長さはそれぞれ$AB=4\sqrt6,BC=10,C=6$とする。
(1)$\cos\angle ABC=\boxed{\ \ テ\ \ }$である。平面ABCで球面Sを切った切り口の円をTとする。
Tの半径は$\boxed{\ \ ト\ \ }$である。点Dが円T上を動くとき、$\triangle DAB$の面積の最大値は
$\boxed{\ \ ナ\ \ }$である。
(2)球面Sの中心Oから平面ABCに下ろした垂線OHの長さは$\boxed{\ \ ニ\ \ }$である。
(3)点Eは球面S上を動くとき、三角錐EABCの体積の最大値は$\boxed{\ \ ヌ\ \ }$である。

2022慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP