【英語】2021年第2回K塾記述模試解説大問4 -2~後編~ - 質問解決D.B.(データベース)

【英語】2021年第2回K塾記述模試解説大問4 -2~後編~

問題文全文(内容文):
和訳問題:Interesting as this sounds, the story has a flaw.
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
和訳問題:Interesting as this sounds, the story has a flaw.
投稿日:2021.10.03

<関連動画>

【数Ⅱ】高2生必見!! 2019年8月 第2回 K塾高2模試 大問3_式と 証明・複素数と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
a,bを実数定数とする。xの方程式 $x^3+(1-a)x^2+3x+b=0$・・・(*) は$x=-1$を解にもつ。
(1)bをaを用いて表せ。
(2)$a=1$のとき、(*)を解け。
(3)(*)が異なる3個の実数解をもつようなaの値の範囲を求めよ。
(4)(3)のとき、(*)の-1以外の解を$\alpha,\beta$とする。 $f(x)=x^2+cx+d$ (c,dは実数の定数) が次の(条件)を満たすとき、c,dの値の組(c,d)を求めよ。 (条件) $f(α)=\dfrac{1}{\beta} f(\beta)=\dfrac{1}{\alpha} f(-1)=-1$
この動画を見る 

【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る 

【数学】2024年度第1回高2記述模試全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1) $(x+2)(2x^2-4x+1)$を展開せよ。
(2) $a^2+3ab-6b-4$を因数分解せよ。
(3) $\dfrac{1}{\sqrt5+1} + \dfrac{1}{\sqrt5+3}$ を計算せよ。
(4) $90^\circ \leqq \theta \leqq 180^\circ$において、$\sin\theta=\dfrac14$のとき、$\cos\theta$の値を求めよ。
(5) 不等式 $\dfrac{x+2}{4} \geqq \dfrac{3x-5}2$を解け。
(6) 次のデータがある。 $2,3,4,4,5,6,7,9$
このデータの中央値と第3四分位数を求めよ。
(7) 円と2本の直線が図のように交わっているとき、$x$の値を求めよ。

大問2-1:図形と計量
三角形$\rm ABC$があり、$\rm AB=1, BC=\sqrt7, \cos\angle ABC=\dfrac{5}{2\sqrt7}$ である。
(1) 辺$\rm CA$の長さを求めよ。
(2) $\cos\angle \rm BAC$の値を求めよ。また、三角形$\rm ABC$の面積を求めよ。
(3) $\rm \angle BAC$を5等分する4本の直線が辺$\rm BC$と交わる4個の点のうち、頂点$\rm B$に最も近い点を$\rm D$とする。線分$\rm AD$の長さを求めよ

大問2-2:場合の数
$\rm A,A,B,C,D,E$の6個の文字を横1列に並べる。
(1) 並べ方は全部で何通りあるか。
(2) $\rm A$が左端にないような並べ方は何通りあるか。
(3) $\rm A$が左端になく、かつEが右端にないような並べ方は何通りあるか。

大問3:2次関数
$a, k$を実数とする。2つの関数
$f(x)=x^2+(2-2a)x-6a+3$
$g(x)=2x^2-2ax-\dfrac{a^2}{2}+2a+k$
に対して、$f(x)$の最小値を$M$, $g(x)$の最小値を$m$とする。
(1) $a=0$のときの$M$の値を求めよ。
(2) $m$を$a, k$を用いて表せ。
(3) $M$と$m$の小さくない方を$a$の関数とみなし、$h(a)$とする。すなわち、
$M\geqq m$のとき、$h(a)=M$
$M\leqq m$のとき、$h(a)=m$
(i) $k=-1$のとき, $h(a)=-\dfrac14$となるような$a$の値を求めよ。
(ii) $h(a)$が次の(条件)を満たすような$a$のとり得る値の範囲を求めよ。
(条件) 異なる3個以上の$a$の値に対して $h(a)$ が同じ値をとることがある。


大問4:複素数と方程式
$x$の2次方程式 $x^2-x+2=0$ がある。
(1) (*)を解け。
(2) 3次式 $x^3+2x^2+7$ を2次式 $x^2-x+2$ で割ったときの商と余りを求めよ。
(3) (*)の2つの解を$\alpha ,\beta$とする。
(i) $(\alpha+1)(\beta+1)$ の値と $\alpha^3+\beta^3$ の値を求めよ。
(ii) $a, b$を実数の定数とする、$x$の2次方程式 $x^2+ax+b=0$ の2つの解が
$(\alpha+1)^3(\beta+1)^3$ となるような$a,b$の値の組 $(a, b)$を求めよ。
(4) $p$を(*)の解とし、
$A=(p^3+2p-2+7)^6+9(p^3+2p^2+7)^3+81$ とする、$A$の値を求めよ。

大問5:確率
4個のサイコロ$A,B,C,D$がある。
(1) $A,B$の2個のサイコロを1回振り、出た目をそれぞれ$a,b$とするとき, $ab=30$となる確率を求めよ。
(2) $A,B,C$の3個のサイコロを1回振り、出た目をそれぞれ$a,b,c$とする。
(i) $abc=30$となる確率と,$abc=180$となる確率をそれぞれ求めよ。
(ii) $abc$が30の倍数となる確率を求めよ。
(3) $A,B,C,D$の4個のサイコロを1回振り、出た目をそれぞれ$a,b,c,d$とする。
(i) $a,b,c,d$の中に、5と6がともに含まれる確率を求めよ。
(ii) $abcd$が30の倍数となる確率を求めよ。
この動画を見る 

【数学】2022年度 第2回 K塾記述高2模試 全問解説(ベクトルはおまけ)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2022年度第2回K塾記述高2模試全問解説動画です!
この動画を見る 

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)$GF=tAB$(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)$AB=\sqrt3,AB・AC=-1,AC=\sqrt7$とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)$AH=kAB$(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 
PAGE TOP