【英語】2021年第2回K塾記述模試解説大問4 -2~後編~ - 質問解決D.B.(データベース)

【英語】2021年第2回K塾記述模試解説大問4 -2~後編~

問題文全文(内容文):
和訳問題:Interesting as this sounds, the story has a flaw.
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
和訳問題:Interesting as this sounds, the story has a flaw.
投稿日:2021.10.03

<関連動画>

【数A】場合の数:2021年高3第1回K塾記述模試

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
白玉6個、赤玉2個、青玉2個の計10個の玉を横一列に並べる。ただし、同じ色の玉は区別しない。
(1)並べ方は全部で何通りあるか。
(2)白赤白赤白と連続して並ぶ箇所があるような並べ方は何通りあるか。
(3)次の、赤玉についての条件A、青玉についての条件Bを考える。
A:「同じ色の玉が両隣にある」
B:「異なる色の玉が 両隣にある」
ただし、列の両端の玉は、AもBも満たさないものとする。例えば、 白赤白白白青赤青白白は、2個の赤玉はともにAを満たし、2個の青玉もともにBを 満たす。また、白赤赤白白青青白白白は、2個の青玉はともにBを満たすが、2個 の赤玉はともにAを満たさない。
(i)2個の赤玉がともにAを満たすような並べ方は 何通りあるか。
(ii)2個の赤玉がともにAを満たし、かつ、2個の青玉がともにBを満たすような並べ方は何通りあるか。
この動画を見る 

【数C】平面ベクトル:高2K塾共通テスト模試(ベクトル)を解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
高2全統共通テスト模試のベクトルの解説です。
この動画を見る 

【数C】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問7_ベクトル

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#全統模試(河合塾)#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形ABCがあり、辺ABを1:2に内分する点をD、辺BCを1:3に内分する点をE、三 角形ABCの重心をGとする。
(1)AD, AE, AGをそれぞれAB, ACを用いて表せ。
(2)GF=tAB(tは実数)と表される点Fがある。
(i)AFをt,AB,ACを用いて表せ。
(ii)さらに、FがDF=uDE(uは実数)を満たすとき、t,uの値を求めよ。
(3)AB=√3,AB・AC=-1,AC=√7とし、Gから直線ABに下した垂線と直線ABとの交点をH とする。 (i)AH=kAB(kは実数)とおくとき、kの値を求めよ。
(ii)Fが(2)(ii)の点であるとき、4点D,F,G,Hを頂点とする四角形の面積を求めよ。
この動画を見る 

【数学】2020年度1月 第4回 K塾記述高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1(小問集合)
(1)$\dfrac{12}{3-\sqrt5}$の整数部分をa、小数部分をbとする。(i)aの値を求めよ。(ii)$b^2+10b$の値を求めよ。
(2)aを実数の定数とする。関数$f(x)=2x^2-6x+a$の$0\leqq x\leqq 1$における最小値が3となるようなaの値を求めよ。
(3)三角形ABCにおいて、$AB=3、BC=4、CA=2$である。$\cos\angle BAC$の値と三角形ABCの外接円の半径を求めよ。
(4)方程式$x^3-x^2-x-2=0$を解け。
(5)円$x^2+y^2=4$上の点($1, \sqrt3$)における接線の方程式を求めよ。
(6)方程式$4^x-5・2-(x+1)+24=0$を解け。
大問2(三角関数)
三角形OABにおいて、$OA=\sqrt3-1、OB=\sqrt2、\angle AOB=\dfrac{3\pi}{4}$が成り立っている。辺AB上(両端を含まない)に点Cをとり、直線OC上に点Dを、3点O、C、Dがこの順に並び、OD=2となるようにとる。$∠AOD=\theta\left(0\lt\theta\lt \dfrac{3\pi}{4}\right)$とおくとき、次の問に答えよ。
(1)三角形OADの面積を$\theta$を用いて表せ。
(2)三角形OBDの面積を$\sin\theta、\cos\theta$を用いて表せ。
(3)Cが辺AB上を動くとき、四角形OADBの面積の最大値、および、最大値を与える$\theta$の値を求めよ。
大問3(場合の数)
0から7までの数字が1つずつ書かれたカードが1枚ずつ、合計8枚のカードがある。この8枚のカードから3枚を選んで左から1列に並べ、2桁、もしくは3桁の整数Nを作る。例えば、012と並べたときは2桁の数で、$N=12$とし、123と並べたときは3桁の数で、$N=123$とする。
(1)2桁のN、3桁のNはそれぞれ何通りできるか。
(2)2桁のNのうち、十の位の数と一の位の数の和が7とならないものは何通りできるか。
(3)百の位が7のとき、どの2つの位の数の和も7とならないものは何通りできるか。
(4)3桁のNのうち、どの2つの位の数の和も7とならないものは何通りできるか。
大問4(微分法)
【問題文】
a、bを実数の定数とする。関数$f(x)=x^3+ax^2+bx+a^2$は$x=-1$で極大値14をとるとする。
(1)a、bの値を求めよ。
(2)$y=f(x)$のグラフとx軸は異なる3点で交わり、そのx座標を小さい方から順に$\alpha,\beta,γ$とする。
(i)$\alpha\gt -3$を示せ。
(ii)$P(3,0)、B(\beta,0)、C(γ,0)$とする。線分PBとPCの長さの大小を比較せよ。
大問5(数列)
【問題文】
2つの数列${a_n}{b_n}$が$a_1=\dfrac{3}{2}、a_{n+1}=\dfrac{3}{2a_n-\dfrac{1}{2}} (n=1,2,3,...)$$ b_1=p、b_{n+1}=b_n+p-\dfrac{1}{2\left(\dfrac{3}{2}\right)^{n-1}} (n=1,2,3,...)$ を満たしている。ただし、pは整数とする。
(1)$a_n$をnの式で表せ。
(2)$b_n$をpとnの式で表せ。
(3)$c_n=b_n-a_n$とする。$c_n$が$n=4$で最大となるようなpの値を求めよ。
この動画を見る 

【数学模試解説】2024年度第1回K塾マーク模試数Ⅰ,A(新課程)第一問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第一問

[1]方程式$9x^2-6x-1=0$の二つの実数解をα,β(α<β)とすると

$α=\displaystyle \frac{ア-\sqrt{イ}}{ウ}$,$β=\displaystyle \frac{ア+\sqrt{イ}}{ウ}$

である。

(1)$n\lt\displaystyle \frac{1}{β}\lt n+1$を満たす整数nは エ である

(2)xについての連立不等式

$\left\{
\begin{array}{l}
αx \lt 1\\
βx \lt 1
\end{array}
\right.$

を考える。
αの符号に注意すると、不等式①の解は オ と表される。
よって連立不等式①かつ②の解は カ と表される。

オ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x$

カ の解答群

⓪ $x\lt\displaystyle \frac{1}{α}$  ① $\displaystyle \frac{1}{α}\lt x\lt\displaystyle \frac{1}{β}$  ② $\displaystyle \frac{1}{β}\lt x$

(3)-9以上9以下の整数のうち、(2)の連立不等式①かつ②の解の範囲に含まれるものの個数は キ 個である。

[2]△ABCにおいて、$AB=7$,$BC=3\sqrt{2}$,$CA=5$とする。このとき

$cos ∠BAC=\displaystyle \frac{ク}{ケ}$,$sin ∠BAC=\displaystyle \frac{コ}{サ}$

である。

△ABCの外接円の中心Oとすると、円Oの半径は$\displaystyle \frac{シ\sqrt{ス}}{セ}$である。
円OのAを含まない弧BC上に点Pを、△PBCの面積が最大となるようにとる。このとき

$PC=\sqrt{ソ}$

である。

また、直線AOと円Oとの交点のうち、Aと異なる方をDとすると

$CD= タ $

であり、

$∠ADC= チツ°$

である。

直線AD上に動点Qをとり、二つの線分$CQ$、$PQ$の長さの和を $L = CQ + PQ$ とする。

太郎:Lの最小値を求めるにはどうすればよいのかな。
花子:直線ADに関してCと対称な点を考えればよいね。

$AB^2\gt BC^2+CA^2$が成り立つから∠ACBは鈍角であり、直線ADに関して3 点B, C, Pがすべて同じ側にあることに注意して考えると、Lの最小値は$テ\sqrt{ト}$である。
この動画を見る 
PAGE TOP