問題文全文(内容文):
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x²+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、$M-m$を求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$を$a+bi$ (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt 180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x²+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、$M-m$を求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$を$a+bi$ (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt 180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
チャプター:
0:00 オープニング
0:05 問題文
0:20 問題解説(1):3乗の展開
0:56 問題解説(2):分数式
2:12 問題解説(3):2次関数の最大最小
3:44 問題解説(4):複素数の計算
4:49 問題解説(5):三角比の対称式
7:14 問題解説(6):場合の数
8:26 名言
単元:
#大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
理数個別チャンネル
問題文全文(内容文):
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x²+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、$M-m$を求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$を$a+bi$ (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt 180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
(1)$(a+3)^3$を展開せよ。
(2)$\dfrac{x-3}{x²+x} +\dfrac{x+9}{x^2+3x}$を計算せよ。
(3)2次関数$y=x^2+2x (-2\leqq x\leqq 2)$における最大値をM、最小値をmとして、$M-m$を求めよ。
(4)iを虚数単位とする。$\dfrac{7+3i}{1+i}$を$a+bi$ (a,bは実数の形で表せ。 )
(5)$0°\leqq\theta\lt 180°、\sin\theta+\cos\theta=\dfrac{1}{2}$のとき、$\sin\theta・\cos\theta$と$\cos\theta-\sin\theta$を求めよ。
(6)異なる5冊の本をAとBの2人に分けるとき、1冊ももらわない人がいてもよいな らば、分け方は何通りか。 また、区別のつかない5冊のノートをAとBの2人に分けるとき、1冊ももらわない 人がいてもよいならば、分け方は何通りか。
投稿日:2021.08.08