問題文全文(内容文):
【回転体の体積】
二等辺三角形ABCを、辺ABを軸に1回転させると、動画内の図のように、点AとBを頂点とし、半径OCの円を底面とする2個の円すいを合わせた回転体ができる。
動画内の図のように、30°,60°,90°の角を持つ直角三角形AOCの辺の比は、
AC:OC=〇:〇であり、AC=6cmなので、底面の円の半径OC=____cm$\times \displaystyle \frac{〇}{〇}$=____cm
よって、できた2個の円すいの和は、
____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$+____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$
=____$\times$3.14$\times$(____+____)=____$\times$3.14$\times$____
=____$\times$3.14 = ____cm³
【回転体の体積】
二等辺三角形ABCを、辺ABを軸に1回転させると、動画内の図のように、点AとBを頂点とし、半径OCの円を底面とする2個の円すいを合わせた回転体ができる。
動画内の図のように、30°,60°,90°の角を持つ直角三角形AOCの辺の比は、
AC:OC=〇:〇であり、AC=6cmなので、底面の円の半径OC=____cm$\times \displaystyle \frac{〇}{〇}$=____cm
よって、できた2個の円すいの和は、
____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$+____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$
=____$\times$3.14$\times$(____+____)=____$\times$3.14$\times$____
=____$\times$3.14 = ____cm³
単元:
#算数(中学受験)#過去問解説(学校別)#立体図形#体積・表面積・回転体・水量・変化のグラフ#昭和学院秀英中学
指導講師:
重吉
問題文全文(内容文):
【回転体の体積】
二等辺三角形ABCを、辺ABを軸に1回転させると、動画内の図のように、点AとBを頂点とし、半径OCの円を底面とする2個の円すいを合わせた回転体ができる。
動画内の図のように、30°,60°,90°の角を持つ直角三角形AOCの辺の比は、
AC:OC=〇:〇であり、AC=6cmなので、底面の円の半径OC=____cm$\times \displaystyle \frac{〇}{〇}$=____cm
よって、できた2個の円すいの和は、
____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$+____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$
=____$\times$3.14$\times$(____+____)=____$\times$3.14$\times$____
=____$\times$3.14 = ____cm³
【回転体の体積】
二等辺三角形ABCを、辺ABを軸に1回転させると、動画内の図のように、点AとBを頂点とし、半径OCの円を底面とする2個の円すいを合わせた回転体ができる。
動画内の図のように、30°,60°,90°の角を持つ直角三角形AOCの辺の比は、
AC:OC=〇:〇であり、AC=6cmなので、底面の円の半径OC=____cm$\times \displaystyle \frac{〇}{〇}$=____cm
よって、できた2個の円すいの和は、
____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$+____$\times$____$\times$3.14$\times$____$\times \displaystyle \frac{〇}{〇}$
=____$\times$3.14$\times$(____+____)=____$\times$3.14$\times$____
=____$\times$3.14 = ____cm³
投稿日:2023.11.20