河合塾で初のストライキ【元講師が詳細解説】 - 質問解決D.B.(データベース)

河合塾で初のストライキ【元講師が詳細解説】

問題文全文(内容文):
大手の河合塾で異例の**ストライキ**が発生!元講師がその詳細を解説する激震の内容だ!

予備校・学習塾業界で大手としては**初めて**となる授業中のストライキが実施された! 今回ストライキを決行したのは、河合塾ユニオンの委員長で、物理を担当する竹達さん(講師歴38年目のベテラン)だという。ストライキは授業全てではなく、90分間の授業の**最後の15分間**に限定して行われる予定だ!

ストライキの背景には、ベテラン講師の**コマ単価が10年以上変わっていない**現状がある。竹達委員長は、コマ単価が約1万7,000円という状況が続き、年収は約500万円から600万円程度だと明かしている。時給に換算すると1万円を超えると見ることもできるが、コマがなければ生活できない、安定しない職業であり、会社からの手当も少ないため、これを高いと取るか低いと取るかは人によると述べられている。

ユニオン側が要求しているのは主に3点だ。

1. **賃上げの実現**:1分あたり35円(1コマ90分で3,150円)の賃上げ。これは時給換算で2,100円の賃上げとなり、この業界では「強欲な申し出」とも聞こえるが、講師は授業準備や採点、生徒の質問対応、保護者への連絡などの業務を無給で行っており、長時間拘束されている点を訴えている。
2. **私学共済への加入**:業務委託契約の講師でも私学共済に加入できるようにすること。
3. **無期転換権の承認**:業務委託契約の講師にも5年間で無期転換を認めるよう要求。

ユニオン側は、物価高騰で実質賃金が下がる中、賃上げ要求を河合塾に一蹴されたため、今回のストライキを決行したとしている。

委員長は、「生徒に迷惑をかけたくない」という思いから授業の最後の15分間に限定したストを実施。ストライキは労働者の基本的な権利であり、業界の多くの場所で若者が疲弊している現状を見て、**「塾講師も労働者である」**ことを示すために、あえて最も象徴的な「スト」の権利を発揮し、他の塾講師がストライキを起こす際のハードルを下げる狙いがあるという。

これに対し河合塾側は、「要求項目に対する弊方の見解が理解いただけず残念」としつつも、適法に行われるストライキは受け入れ、**別の講師による補填授業**(90分間まるまる授業)を用意することで対応するとしている。

この慰霊のストライキが、予備校業界の労働環境をどう変えるのか、結果に注目が集まっている!
単元: #大学入試過去問(数学)#情報Ⅰ(高校生)#全統模試(河合塾)#英語(高校生)#大学入試過去問(英語)#全統模試(河合塾)#数学(高校生)#模試解説・過去問解説#【河合塾】全統共通テスト模試
指導講師: Morite2 English Channel
問題文全文(内容文):
大手の河合塾で異例の**ストライキ**が発生!元講師がその詳細を解説する激震の内容だ!

予備校・学習塾業界で大手としては**初めて**となる授業中のストライキが実施された! 今回ストライキを決行したのは、河合塾ユニオンの委員長で、物理を担当する竹達さん(講師歴38年目のベテラン)だという。ストライキは授業全てではなく、90分間の授業の**最後の15分間**に限定して行われる予定だ!

ストライキの背景には、ベテラン講師の**コマ単価が10年以上変わっていない**現状がある。竹達委員長は、コマ単価が約1万7,000円という状況が続き、年収は約500万円から600万円程度だと明かしている。時給に換算すると1万円を超えると見ることもできるが、コマがなければ生活できない、安定しない職業であり、会社からの手当も少ないため、これを高いと取るか低いと取るかは人によると述べられている。

ユニオン側が要求しているのは主に3点だ。

1. **賃上げの実現**:1分あたり35円(1コマ90分で3,150円)の賃上げ。これは時給換算で2,100円の賃上げとなり、この業界では「強欲な申し出」とも聞こえるが、講師は授業準備や採点、生徒の質問対応、保護者への連絡などの業務を無給で行っており、長時間拘束されている点を訴えている。
2. **私学共済への加入**:業務委託契約の講師でも私学共済に加入できるようにすること。
3. **無期転換権の承認**:業務委託契約の講師にも5年間で無期転換を認めるよう要求。

ユニオン側は、物価高騰で実質賃金が下がる中、賃上げ要求を河合塾に一蹴されたため、今回のストライキを決行したとしている。

委員長は、「生徒に迷惑をかけたくない」という思いから授業の最後の15分間に限定したストを実施。ストライキは労働者の基本的な権利であり、業界の多くの場所で若者が疲弊している現状を見て、**「塾講師も労働者である」**ことを示すために、あえて最も象徴的な「スト」の権利を発揮し、他の塾講師がストライキを起こす際のハードルを下げる狙いがあるという。

これに対し河合塾側は、「要求項目に対する弊方の見解が理解いただけず残念」としつつも、適法に行われるストライキは受け入れ、**別の講師による補填授業**(90分間まるまる授業)を用意することで対応するとしている。

この慰霊のストライキが、予備校業界の労働環境をどう変えるのか、結果に注目が集まっている!
投稿日:2025.05.15

<関連動画>

【数A】確率:高3 5月K塾共通テスト 数学IA第3問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
1個のさいころを繰り返し投げ、次の規則に従って数直線上の点Pを動かす。
・原点から出発して、1回目に出た目の数だけ点Pを負の方向に動かす。
・1回目で点Pがとまった位置から出発して、2回目に出た目の数だけ点Pを正の方向に動かす。
・2回目で点Pがとまった位置から出発して、3回目に出た目の数だけ点Pを負の方向に動かす。
・以下同様に、直前の回で点Pgaとまった位置から出発して、奇数回目の移動では出た目の数だけ点Pを負の方向に動かし、偶数回目の移動では出た目の数だけ点Pを正の方向に動かす。
例えば、さいころを4回投げて順に5,5,2,6の目が出た場合、点Pの座標は順に、-5,0,-2,4となる。
(1)2回目の移動後に点Pの座標が0となる確率は(ア)/(イ)、4となる確率は(ウ)/(エオ)、5となる確率は(カ)/(キク)である。
(2)4回目の移動後に点Pの座標が9となるのは、点Pの座標が2回目の移動後に(ケ)となり、4回目の移動後に9となる場合、または点Pの座標が2回目の移動後に(コ)となり、4回目の移動後に9となる場合のいずれかである。ただし、(ケ)と(コ)の順序は問わない。
よって、4回目の移動後に点Pの座標が9となる確率は(サ)/(シスセ)である。
また、4回目の移動後に点Pの座標が9であったとき、3回目の移動後の点Pの座標が4である条件付き確率は(ソ)/(タ)である。
(3)7回目の移動後に点Pの座標が13となる確率は(チ)/(ツ)^(テ)である。
この動画を見る 

【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る 

【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

【数学】(一気見用)高2生必見!! 2019年度8月 第2回 K塾高2模試(※大問1(3)、大問5(*)式に訂正あり)

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
2019年度8月 第2回 K塾高2模試 総集編
この動画を見る 

【数学】2023年度 第4回 高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
この動画を見る 
PAGE TOP