【数学】2023年度 第2回 K塾高2模試 全問解説 - 質問解決D.B.(データベース)

【数学】2023年度 第2回 K塾高2模試 全問解説

問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
チャプター:

0:00 オープニング
0:05 第1問の問題文:小問集合
0:10 (1)展開
0:48 (2)繁分数の整理
1:43 (3)2次関数の最小値
3:18 (4)iを含む式の整理
4:20 (5-i)余弦定理
5:23 (5-ii)三角形の面積
6:08 (6-i)同じものを含む順列
7:03 (6-ii)隣り合わない並べ方

8:06 第2問-iの問題文:2次不等式
8:17 (1)2次不等式を解け
9:15 (2)絶対値付きの不等式
10:12 (3)絶対不等式

12:00 第2問-iiの問題文:図形と方程式
12:21 (1)円の中心と半径
13:37 (2)円周上の点における接線
14:25 (3)lに接するときの半径。線分の長さ

17:13 第3問の問題文:複素数と方程式
17:27 (1)f(-3)の値
18:08 (2)高次方程式を解け
20:54 (3)虚数解をもつ条件
21:42 (4)条件を満たすa,bの組

27:25 第4問の問題文:確率
27:48 (1-i)X=2のとき
28:23 (1-ii)X=4のとき
29:05 (2-i)Y=4のとき
30:41 (2-ii)Yの期待値
33:31 (3)Yの合計が15になるとき

35:15 第5問の問題文:三角関数
35:25 (1)2倍角の公式
35:37 (2)三角方程式
37:17 (3-i)解を4個持つ条件
39:57 (3-ii)条件を満たすaの値

44:25 第6問の問題文:数列
44:52 (1)等差数列の一般項と和
47:00 (2)等比数列の一般項
48:23 (3-i)2023番目の値
51:37 (3-ii)2023番目までの和
56:36 エンディング

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
投稿日:2024.07.20

<関連動画>

【数学】(高2生必見!!)2019年度 第3回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)2次不等式$x^2+5x-6\lt 0$を解け。
(2)9人の生徒を3人ずつA,B,Cの3つの組に分けるとき、分け方は何通りか。
(3)次のデータがある。3,5,5,6,7,10.このデータの平均値を求めよ。また、分散を求めよ。
(4)$(4x+1)^5$を展開したとき、$x^2$の係数を求めよ。
(5)xの整式$x^3-3x^2+ax-a$ (aは定数)がx-2で割り切れるとき、aの値を求めよ。
(6)$a\neq 0,b\neq 0$とする。 $(ab)^5\times (a^2)^{-3}\div (b^2)^2$を計算せよ。
(7)整数m,nについて、$m+n$が偶数であることは、mnが偶数であるための$\Box$である。
(選択肢)
①必要十分条件である
②必要条件であるが、十分条件ではない
③十分条件であるが、必要条件ではない
④必要条件でも十分条件でもない

大問2[1]:式と証明
次のような問題がある。
問1 すべての実数xに対して、不等式 $x^2+x+1\geqq 3x-2 …$(*)が成り立つことを証明せよ。
問2 $x\geqq 2$のとき、関数$ f(x)=\dfrac{x+2}{x}$ の最小値を求めよ。
太郎さんはこの問題の解答を次のように書いた。
問1 $(x^2+x+1)-(3x-2)=x^2-2x+3=(a-1)^2+2$ すべての実数xに対して、$(x-1)^2\geqq 0$であるから、$(a-1)^2+2\geqq 0$ よって、$x^2+x+1\geqq 3x-2$ は成り立つ。
問2 $x\geqq 2$のとき、$x\gt 0,\dfrac{2}{x}\gt 0$であるから、相加平均と相乗平均の大小関係より、$\dfrac{x+2}{x}\geqq 2\sqrt x\times \dfrac{2}{x}$ これより、$f(x)\geqq 2\sqrt2$ よって、f(x)の最小値は$2\sqrt2$である。
(1)太郎さんの問1の解答は正しいか、正しくないか答えよ(答えのみでよい)。また、xが実数のとき、問1の不等式(*)において、等号が成り立つか成り立たないか答えよ。さらに、その理由を「実数」「実数解」のいずれかの単語を用いて説明せよ。

大問2[2]:確率
1~4の数字が書かれたカードが1枚ずつ計4枚のカードが入っている袋がある。この袋の中から1枚のカードを無作為に取り出し、カードに書かれた数を記録して袋に戻すことを繰り返し4回行う。
(1)4回とも1が記録される確率を求めよ。
(2)4回とも2以上の数が記録される確率を求めよ。
(3)記録された4個の数の最小値が2である確率を求めよ。

大問3:図形と方程式
aは実数の定数とする。xy平面上に2点A(1,0)、B(-1,4)と円C:$x^2+y^2-2(a+1)x-4ay+5a^2+2a=0$があり、Cの中心をPとする。
(1)線分ABの長さと、直線ABの方程式を求めよ。
(2)$a=1$のとき、Pの座標を求めよ。また、このときのPと直線ABの距離を求めよ。
(3)aが実数全体を変化するとき、Pの軌跡を求めよ。
(4)aの値が$1\leqq a\leqq 3$の範囲を変化するとき、Cが通過する領域をDとする。点QがDを動くとき、三角形ABQの面積の最小値と最大値をそれぞれ求めよ。

大問4:三角関数
座標平面上に2点A(8,0)、B(0,8)と、原点を中心とする半径3の円がある。この円上に、x座標、y座標がともに正である点P($3\cos\theta,3\sin\theta)\left(0\lt\theta\lt \dfrac{\pi}{2}\right)$をとる。Pからx軸に下した垂線とx軸の交点をQ、Pからy軸に下した垂線とy軸の交点をRとし、△APQと△BPRの面積の和をSとする。
(1)線分AB、BRの長さをそれぞれ$\sin\theta、\cos\theta$を用いて表せ。
(2)Sを$\sin\theta、\cos\theta$を用いて表せ。
(3)$t=\sin\theta+\cos\theta$とする。$\theta$が$0\lt\theta\lt\dfrac{\pi}{2}$の範囲を変化するとき、tのとり得る値の範囲を求めよ。
(4)(i)θが$0\lt\theta\lt\dfrac{\pi}{2}$の範囲を変化するとき、Sの最大値を求めよ。
(ii)Sが最大となる$\theta$は2つあり、それらを$\theta_1,\theta_2\left(0\lt\theta_1\lt\theta_2\lt\dfrac{\pi}{2}\right)$とする。このとき、$\dfrac{\pi}{8}\lt \theta_1\lt\dfrac{\pi}{6}$であることを証明せよ。

大問5:微分法
3次関数 $f(x)=2x^3+3(1-a)x^2-6ax+8a$ がある。ただし、aは実数の定数である。
(1)a=2とする。
(i)f(x)の増減を調べて、f(x)の極大値と極小値を求めよ。
(ii)xの方程式$f(x)=0$の解で、$1\lt x\lt2$を満たすものの個数を求めよ。
(2)f(x)が$1\lt x\lt 2$において極値をもたないようなaの値の範囲を求めよ。
(3)xの方程式$f(x)=0$が$1\lt x\lt 2$の範囲に少なくとも1つの解をもつようなaの値の範囲を求めよ。

大問6:ベクトル
Oを原点とする座標空間に、3点A(1,2,2)、B(3,-4,0)、C(a,b,5)があり、$OA⊥OC$かつ$OB⊥OC$が成り立っている。
(1)$\vert OA\vert$、$\vert OB\vert$、内積$OA・OB、\cos\angle AOB$の値をそれぞれ求めよ。
(2)a,bの値を求めよ。
(3)四面体OABCの体積を求めよ。
(4)Oを中心とする半径rの球面Sがある。Sが3点A,B,Cを通る平面と交わってできる円の半径が2であるとき、rの値を求めよ。

大問7:数列
数列{$a_n$}$(n=1,2,3,…)$を$a_1=7, a_{n+1}=a_n+4(n=1,2,3,…)$によって定める。
(1)$a_4$の値を求めよ。また、数列{$a_n$}の一般項$a_n$を求めよ。
(2)$\displaystyle \sum_{k=1}^n a_k$を求めよ。
(3)数列{$b_n$}$(n=1,2,3,…)$を$b_1=3, b_{n+1}-b_n=a_n(n=1,2,3,…)$によって定める。数列{$b_n$}の一般項$b_n$を求めよ。
(4)数列{$c_n$}$(n=1,2,3,…)$を(3)の$b_n$を用いて、$c_1=\dfrac{1}{5}, c_{n+1}=b_n\times \dfrac{c_n}{(b_{n+1}-3)}(n=1,2,3,…)$によって定める。数列${c_n}$の一般項$c_n$を求めよ。また、$\displaystyle \sum_{k=1}^n c_k$を求めよ。
この動画を見る 

【数Ⅱ】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問2-2_図形と方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
mを実数の定数とする。xy平面上に 円$C:x^2+y^2-2x-6y+9=0$ 直線$l:y=mx$ がある。
(1)Cの中心の座標と半径を求めよ。
(2)Cとlが接するようなmの値を求めよ。
(3)(2)のときのCとlの接点をPとする。Pにおいてlに接し、x軸上に中心があるような円の方程式を求めよ
この動画を見る 

【数B】数列:2019年第2回高2K塾記述模試の第6問を解いてみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{${a_n}$}$(n=1,2,3,...)$は初項-8、公差4の等差数列であり、数列{$b_n$}$(n=1,2,3,...)$は初項から第n項までの和がS[n]=3^n/2(n=1,2,3,...)で与えられる数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの和を求めよ。
(2)$\displaystyle \sum_{k=1}^{n}(a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。
(4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_kb_k \vert$を求めよ。
この動画を見る 

【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

【数学】2023年度 第4回 高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1:小問集合
(1)AB=15, AC=7, ∠BAC=60°の△ABCがある。辺BCの長さと△ABCの内接円の半径を求めよ。
(2)aを実数の定数とする。xの2次方程式x2-ax-a-9=0が-2より小さい解と3より大きい解をもつようなの値の範囲を求めよ。
(3)方程式x3+3x2+2x-6=0を複素数の範囲で解け。
(4)座標平面上の直線y=x上の点で、直線x+2y-4=0までの距離が√5である点の座標をすべて求めよ。
(5)方程式4^(x+1)+7・2^x-2=0を解け。
(6)不等式log₂x+1≧log₂(2-x)を解け。

大問2:三角関数
aを正の定数とし、関数f(θ)をf(θ)=2sin²θ+2√3sinθcosθ+a(√3sinθ+cosθ)-6a²+1とする。
(1)√3sinθ+cosθをrsin(θ+α)の形に表せ。ただし、r>0,-π<α≦πとする。
(2)t=√3sinθ+cosθとおくとき、f(θ)をtの2次式で表せ。
(3)方程式f(θ)=0(0≦θ≦π)…(*)について考える。
(i)a=1のとき、(*)を解け。
(ii)(*)の異なる解の個数がちょうど2個となるようなaの値の範囲を求めよ。

大問3:場合の数
A,B,Cの3人を含む9人の生徒について考える。
(1)4人と5人の2つの組に分けるとき、分け方は何通りあるか。
(2)3人ずつ3つの組に分けるとき、
(i)分け方は全部で何通りあるか。
(ii)AとBが同じ組に入る分け方は何通りあるか。
(3)「9人を3人ずつ3つの班に分けて、それぞれの班で1人ずつ班長を選ぶこと」を班決めということにする。その際、AとBが同じ班に入るときAは班長になることができず、BとCが同じ班に入るときBは班長になることができないものとする。
(i)AとBが同じ班に入り、Cは別の班に入る班決めの仕方は何通りあるか。
(ii)班決めの仕方は全部で何通りあるか。

大問4:微分法
t>0とする。f(x)=x⁴-6x²とし、曲線C:y=f(x)上の点P(t,f(t))におけるCの接線をlとする。
(1)t=1のときのlの方程式を求めよ。また、このときlとCのP以外の共有点の座標を求めよ。
(2)lとCがP以外に異なる2つの共有点をもつようなtの値の範囲を求めよ。
(3)(2)のとき、lとCのP以外の2つの共有点をQ(α,f(α)), R(β,f(β))(a<β)とし、3点P, Q, RにおけるCの接線の傾きをそれぞれmP、mQ、mRとする。このとき、mP+mQ+mRのとり得る値の範囲を求めよ。

大問5:数列
数列{a[n]}(n=1,2,3,…)は公差が正の等差数列でa₁+a₂+a₃=-3. a₁a₃=-3を満たし、数列{b[n]}は
b₁=-1, b[n+1]=│b[n]│+a[n] (n=1,2,3,…)を満たしている。
(1)数列{a[n])の一般項を求めよ。
(2)b₂、b₃を求めよ。また、b≧0となるようなnの値の範囲を求めよ。
(3)n≧4のとき、数列{b[n]}の一般項を求めよ。
(4)n≧4のとき、∑[k=1~n]b[k]を求めよ。
この動画を見る 
PAGE TOP