【この考え方が役に立つ!】図形:東京工業大学附属科学技術高等学校~全国入試問題解法 - 質問解決D.B.(データベース)

【この考え方が役に立つ!】図形:東京工業大学附属科学技術高等学校~全国入試問題解法

問題文全文(内容文):
3つの正方形を組み合わせたとき,影を付けた部分の面積を求めなさい.

東工大科技高校過去問
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3つの正方形を組み合わせたとき,影を付けた部分の面積を求めなさい.

東工大科技高校過去問
投稿日:2022.11.02

<関連動画>

【高校受験対策/数学】死守-78

アイキャッチ画像
単元: #数学(中学生)#中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#平方根#2次方程式#比例・反比例#1次関数#2次関数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
高校受験対策・死守78

①下の図のように、長方形$ABCD$の中に 1辺の長さが$\sqrt{5}cm$と$\sqrt{10}cm$の正方形がある。
このとき、斜線部分の長方形の間の長さを求めなさい。

②葉一くんは、下の図の平行四辺形$ABCD$の面積を求めるために、辺$BC$を底辺とみて、高さを測ろうと考えた。
点を$P$下の図のようにとるとき、線分$PH$が高さとなるような点$H$を作図によって求めなさい。

③1000円で、1個$a$円のクリームパン5個と1個$b$円のジャムパン3個を買うことができる。
ただし消費税は考えないものとする。
この数量の関係を表した不等式としてもっとも適切なものを、次の ア~エの中から一つ選んで、その記号を書きなさい。

ア $1000-(5a+3b) \lt 0$
イ $5a+3b \lt 1000$
ウ $1000-(5a+3b) \geqq 0$
エ $(5a+3b) \geqq 1000$

④ 右の図で、点$A$は関数$y=\frac{2}{x }$と関数$y=ax^2$のグラフの交点である。
点$B$は点$A$を$y$軸を対称の軸として対称移動させたものであり、$x$座標は$-1$である。
このことから、$a$の値はアであり、関数$y=ax^2$について、 $x$の値が1から3まで増加するときの変化の割合はイであることがわ かる。
このとき上のア・イに当てはまる数をそれぞれ書きなさい。
この動画を見る 

2023高校入試数学解説91問目 長方形の折り返し② 京都府

アイキャッチ画像
単元: #数学(中学生)#中1数学#平面図形#高校入試過去問(数学)
指導講師: 数学を数楽に
問題文全文(内容文):
線分BI=?
*図は動画内参照

2023京都府
この動画を見る 

【ソフィー・ジェルマンに感謝して】計算:市川高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#正の数・負の数#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ \dfrac{1}{6}\times\dfrac{(4^4+4・3^4)(4^4+4・11^4)(4^4+4・19^4)}{(4^4+4・7^4)(4^4+4・15^4)(4^4+4・23^4)}\times\dfrac{(4^4+4・27^4)(4^4+4・35^4)}{(4^4+4・31^4)(4^4+4・39^4)}$
を計算せよ.

市川高校過去問
この動画を見る 

【ナットクして完答…!】整数:明治大学付属中野高等学校~全国入試問題解法

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式#高校入試過去問(数学)#明治大学付属中野高等学校
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
3けたの正の整数において、上2けたの数から一の位の数を引いた数が11の倍数のとき、もとの3けたの整数は11の倍数であることを証明せよ。
この動画を見る 

【中1数学】中1-16 文字式を作ろう⑤ ~式の意味編~

アイキャッチ画像
単元: #数学(中学生)#中1数学#文字と式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎それぞれの式は何を表している?
ある映画館では、おとな1人$x $円、こども1人$y$円でチケットが売られている。
→$x+2y$→①____________
→$x-y$→② ____________
縦$a cm$ ,横$b cm$の長方形がある。
→$2a+2b$→③ ____________
→$ab$→④ ____________
縦$a cm$ ,横$b cm$,高さ $C cm$の立方体がある。
→$abc$→⑤ ____________
→$4(a+b+c)$→⑥ ____________
家から公園まで分速$80m$で$x$分間歩き、
公園から駅まで分速$150m$ で$y$分間走って行った。
→$x+y$→⑦ ____________
→$80x+150y$→⑧ ____________
この動画を見る 
PAGE TOP