2024年度第2回記述模試高3数学解説 - 質問解決D.B.(データベース)

2024年度第2回記述模試高3数学解説

問題文全文(内容文):
大問1
(1) 袋の中に5枚のコインが入っており、そのうち2枚には両面にAが書かれており、残り3枚には片面にA、もう一方の面にBが書かれている。
(ⅰ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になる確率を求めよ。
(ⅱ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になった。このとき、下の面にもAが書かれている確率を求めよ。
(2) 多項式$(x-1)^{99}$を$x^2$で割った時の余りを求めよ。また、整数$99^{99}$を10000で割った時の余りを求めよ。
(3) $12^{12}$の桁数を求めよ。
(4)$\displaystyle z=\frac{-\sqrt{3}+i}{1+i}$とする。
(ⅰ)zを極形式で表せ。
(ⅱ)nを正の整数とする。$z^n$が実数となるような最小のnを求めよ。

大問2
 数列${a_n}$の初項$a_1$から第n項$a_n$までの和を$S_n$、数列${b_n}$の初項$b_1$から第n項$b_n$までの和を$T_n$をとするとき
$a_1=2、b_1=0、a_{n+1}=2T_n+2、b_{n+1}=2S_n$ が成り立つ。
(1) $a_2、b_2$を求めよ
(2) $a_{n+1}、b_{n+1}$を$a_n、b_n$を用いて表せ。
(3) 一般項$a_n$を求めよ。

大問3
 aは実数の定数とし、関数f(x)を
$f(x)=e^{-x}(a-sinx-cosx) (0<x<2π)$により定める。
(1)f(x)が極値を持つとき、aの値の範囲を求めよ。
(2)f(x)が極値を2つ持つときを考える。極値の積が負となるとき、aの値の範囲を求めよ。また、極値の積が$\displaystyle \frac{-e^{-3π}}{2}$となるときのaの値を全て求めよ。

大問4
AB=1、AC=3、BC=$2\sqrt{3}$である三角形ABCがある。$\overrightarrow{AB}=\vec{b}、\overrightarrow{AC}=\vec{c}$とする。
(1) 内積$\vec{b}・\vec{c}$の値を求めよ。
(2) s,tを実数とし、$\overrightarrow{AP}=s\vec{b}+t\vec{c}$とする。AB⊥BP、AC⊥CPであるとき、s,tの値を求め、さらに|$\overrightarrow{AP}$|を求めよ。
(3)点Qが三角形ABCの外接円上を動くとき、三角形BCQの面積を最大にするQを$Q_0$とする。$\overrightarrow{AQ_0}$を$\vec{b},\vec{c}$を用いて表せ。

大問5
 $0≦x<π$において定義された関数
$f(x)=\displaystyle \frac{2sinx}{1+cosx}、g(x)=\frac{\sqrt{3}}{1+cosx}$ 
があり、曲線y=f(x)を$C_1$、曲線y=g(x)を$C_2$とする。
(1) $C_1、C_2$の共有点のx座標を求めよ
(2)(ⅰ)不定積分$\int f(x)dx$を求めよ
(ⅱ)$tan\frac{2}{x}$の導関数をcosxを用いて表せ
(3)$C_1、C_2$およびy軸の3つで囲まれる部分の面積を$S_1$とし、$C_1$と$C_2$で囲まれる部分の面積を$S_2$とする。$S_1$と$S_2$の大小を比較せよ。ただし、自然対数の底eについて、2.7<e<2.8であることは用いてよい。

大問6
正の整数Nを3で割った時の余りは2である。
(1)正の整数a,bを3で割った時の余りをそれぞれ$r_a、r_b$とする。ab=Nが成り立つとき、$r_a、r_b$の組をすべて求めよ。
(2)Nの正の約数の総和を3で割った時の余りを求めよ。
(3)Nの正の約数の逆数の総和を$\displaystyle \frac{q}{p}$(ただし、pとqはともに正の整数で最大公約数は1である)と表したとき、qは3の倍数であることを示せ。
チャプター:

0:00 今回の模試の難易度について
0:45 偏差値50の取り方
3:15 第1回全統記述模試の結果発表
3:55 大問1(2)解説
7:27 大問1(4)(ⅰ)解説
13:00 大問2(2)(3)解説
18:37 大問3(1)解説
23:29 大問3(2)解説
33:00 大問4(3)解説
39:04 大問5(3)解説
46:34 大問6(2)解説
52:00 大問6(3)解説

単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師:
問題文全文(内容文):
大問1
(1) 袋の中に5枚のコインが入っており、そのうち2枚には両面にAが書かれており、残り3枚には片面にA、もう一方の面にBが書かれている。
(ⅰ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になる確率を求めよ。
(ⅱ)袋から無作為にコインを1枚選び、選んだコインを投げたとき、Aが書かれた面が上になった。このとき、下の面にもAが書かれている確率を求めよ。
(2) 多項式$(x-1)^{99}$を$x^2$で割った時の余りを求めよ。また、整数$99^{99}$を10000で割った時の余りを求めよ。
(3) $12^{12}$の桁数を求めよ。
(4)$\displaystyle z=\frac{-\sqrt{3}+i}{1+i}$とする。
(ⅰ)zを極形式で表せ。
(ⅱ)nを正の整数とする。$z^n$が実数となるような最小のnを求めよ。

大問2
 数列${a_n}$の初項$a_1$から第n項$a_n$までの和を$S_n$、数列${b_n}$の初項$b_1$から第n項$b_n$までの和を$T_n$をとするとき
$a_1=2、b_1=0、a_{n+1}=2T_n+2、b_{n+1}=2S_n$ が成り立つ。
(1) $a_2、b_2$を求めよ
(2) $a_{n+1}、b_{n+1}$を$a_n、b_n$を用いて表せ。
(3) 一般項$a_n$を求めよ。

大問3
 aは実数の定数とし、関数f(x)を
$f(x)=e^{-x}(a-sinx-cosx) (0<x<2π)$により定める。
(1)f(x)が極値を持つとき、aの値の範囲を求めよ。
(2)f(x)が極値を2つ持つときを考える。極値の積が負となるとき、aの値の範囲を求めよ。また、極値の積が$\displaystyle \frac{-e^{-3π}}{2}$となるときのaの値を全て求めよ。

大問4
AB=1、AC=3、BC=$2\sqrt{3}$である三角形ABCがある。$\overrightarrow{AB}=\vec{b}、\overrightarrow{AC}=\vec{c}$とする。
(1) 内積$\vec{b}・\vec{c}$の値を求めよ。
(2) s,tを実数とし、$\overrightarrow{AP}=s\vec{b}+t\vec{c}$とする。AB⊥BP、AC⊥CPであるとき、s,tの値を求め、さらに|$\overrightarrow{AP}$|を求めよ。
(3)点Qが三角形ABCの外接円上を動くとき、三角形BCQの面積を最大にするQを$Q_0$とする。$\overrightarrow{AQ_0}$を$\vec{b},\vec{c}$を用いて表せ。

大問5
 $0≦x<π$において定義された関数
$f(x)=\displaystyle \frac{2sinx}{1+cosx}、g(x)=\frac{\sqrt{3}}{1+cosx}$ 
があり、曲線y=f(x)を$C_1$、曲線y=g(x)を$C_2$とする。
(1) $C_1、C_2$の共有点のx座標を求めよ
(2)(ⅰ)不定積分$\int f(x)dx$を求めよ
(ⅱ)$tan\frac{2}{x}$の導関数をcosxを用いて表せ
(3)$C_1、C_2$およびy軸の3つで囲まれる部分の面積を$S_1$とし、$C_1$と$C_2$で囲まれる部分の面積を$S_2$とする。$S_1$と$S_2$の大小を比較せよ。ただし、自然対数の底eについて、2.7<e<2.8であることは用いてよい。

大問6
正の整数Nを3で割った時の余りは2である。
(1)正の整数a,bを3で割った時の余りをそれぞれ$r_a、r_b$とする。ab=Nが成り立つとき、$r_a、r_b$の組をすべて求めよ。
(2)Nの正の約数の総和を3で割った時の余りを求めよ。
(3)Nの正の約数の逆数の総和を$\displaystyle \frac{q}{p}$(ただし、pとqはともに正の整数で最大公約数は1である)と表したとき、qは3の倍数であることを示せ。
投稿日:2024.09.21

<関連動画>

2024年度第1回K塾記述模試数学Ⅲ型全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
【1】
(1) 不等式$2| x-2|-x≦$4を解け。
(2) 関数$f(x)=\log_{ 2 } (x-1)+2\log_{ 4 } (3-2x)$の最大値を求めよ。
(3) 曲線$y=x^3+2x^2$とx軸によって囲まれた部分の面積を求めよ。
(4) $\displaystyle \sum_{k=1}^n \displaystyle \frac{1}{4k^2-1}$をnを用いて表せ。
(5) $OA=2,OB=3,∠AOB=60°$である三角形$OAB$において辺$AB$を$1:3$に内分する点を$C$とする。
(ⅰ) $OC$を$OA,OB$を用いて表せ。
(ⅱ) $|OC|$を求めよ。


【2】
1個のサイコロを繰り返し振る。$k$回目($k=1,2,3,…$)に奇数の目が出たら、その目の数を$x_k$とし、偶数の目が出たら、その目の数を2で割った商を$x_k$とする。 $S_n=x_1+x_2+x_3+…+x_n$ ($n=1,2,3,…$) と定める。
(1) $S_1=3$ である確率、$S_2=6$ である確率をそれぞれ求めよ。
(2) $S_4=12$ である確率を求めよ。
(3) $S_4=12$ であったとき、$S_2=6$ である確率を求めよ。

【3】
$A$を正の定数とし、$0\leqq\theta\lt 2\pi$において、$\theta$の方程式 $a\sin2\theta-2a^2\cos\theta-\sin\theta+a=0$  …(*) を考える。
(1) $a=1$のとき、(*)を解け。
(2) (*)がちょうど3つの解をもつような$a$の値を求めよ。
(3) (*)がちょうど4つの解をもつとする。4つの解のうち、最小のものを$\alpha$、最大のものを$\beta$とするとき、$\alpha+\beta$の値を求めよ。


【4】
$xy$平面上において、連立不等式 $x\geqq 0,y\geqq 0,x+y\leqq 1$ で表された領域を$D$とする。
(1) 点P($x,y$)が$D$上を動くとき $X=2x-6y,Y=5x+y$ によって定められる点$Q$($X,Y$)が存在する領域を$XY$平面上図示せよ。
(2) $a$を実数の定数とする。点$P$($x,y$)が$D$上を動くとき   $(2x-6y-a)^2+(5x+y)^2$ の最大値を$a$を用いて表せ。


【5】
平面上に直線lとそれに接する半径1の円$C_1$がある。$C_1$の右側にあり、$C_1$と$l$に接する円を$C_2$とする。 $C_n$の中心を$A_n$,半径を$r_n,C_n$と$l$の接点を$B_n$とすると $A_nB_n:A_nA_(n+1)=1:p$ が成り立っている。ただし、$p$は$1\lt p\lt 2$を満たす定数とする。
(1) $r_(n+1)$を$r_n$,$p$を用いて表し、$r_n$求めよ。 また、$Σr_n=3$となるような$p$の値を求めよ。
(2) $p$を(1)で求めた値とする。
(ⅰ) $\ B_nB_{n+1}$を求めよ
(ⅱ) 極限値$\displaystyle\lim_{n\to\infty}{B_1B_n}$を求めよ
(ⅲ) $\alpha=\displaystyle\lim_{n\to\infty}{B_1B_n}$とし、$\beta$を正の定数とする。   極限$\displaystyle\lim_{n\to\infty}(B1Bn-\alpha)\beta n$が0以外の値に収束するよう$\beta$の値と、そのときの極限値を求めよ。


【6】
$a$を正の定数とし、$i$を虚数単位とする。複素数$z$に関する2つの方程式 $z^3=-8i$…①   $z^2-2az+8=0$…②   を考える。
(1) ①を満たす$z$について、$z$の極形式を $z=r(\cos\theta+i\sin\theta)r\gt 0,0\leqq\theta\lt 2\pi$ と表すとき、$r,\theta$の値を求めよ。
(2) ②が異なる2つの虚数解$\alpha,\beta$を持ち、複素数平面上で3点$0,\alpha,\beta$を頂点とする三角形の面積が4であるとする。ただし、($\alpha$の虚部)>($\beta$の虚部)。 (ⅰ) $a$の値と$\alpha,\beta$を求めよ。
(ⅱ)偏角を0以上$2\pi$未満の値で考えるとき,①の解のうち偏角が最大であるものを$γ$とする。複素数平面上で3点$\alpha,\beta,γ^n$を頂点とする三角形の内部に原点が存在するような正の整数$n$を求めよ。
この動画を見る 

【数学】2020年度1月 第4回 K塾記述高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
大問1(小問集合)
(1)$\dfrac{12}{3-\sqrt5}$の整数部分をa、小数部分をbとする。(i)aの値を求めよ。(ii)$b^2+10b$の値を求めよ。
(2)aを実数の定数とする。関数$f(x)=2x^2-6x+a$の$0\leqq x\leqq 1$における最小値が3となるようなaの値を求めよ。
(3)三角形ABCにおいて、$AB=3、BC=4、CA=2$である。$\cos\angle BAC$の値と三角形ABCの外接円の半径を求めよ。
(4)方程式$x^3-x^2-x-2=0$を解け。
(5)円$x^2+y^2=4$上の点($1, \sqrt3$)における接線の方程式を求めよ。
(6)方程式$4^x-5・2-(x+1)+24=0$を解け。
大問2(三角関数)
三角形OABにおいて、$OA=\sqrt3-1、OB=\sqrt2、\angle AOB=\dfrac{3\pi}{4}$が成り立っている。辺AB上(両端を含まない)に点Cをとり、直線OC上に点Dを、3点O、C、Dがこの順に並び、OD=2となるようにとる。$∠AOD=\theta\left(0\lt\theta\lt \dfrac{3\pi}{4}\right)$とおくとき、次の問に答えよ。
(1)三角形OADの面積を$\theta$を用いて表せ。
(2)三角形OBDの面積を$\sin\theta、\cos\theta$を用いて表せ。
(3)Cが辺AB上を動くとき、四角形OADBの面積の最大値、および、最大値を与える$\theta$の値を求めよ。
大問3(場合の数)
0から7までの数字が1つずつ書かれたカードが1枚ずつ、合計8枚のカードがある。この8枚のカードから3枚を選んで左から1列に並べ、2桁、もしくは3桁の整数Nを作る。例えば、012と並べたときは2桁の数で、$N=12$とし、123と並べたときは3桁の数で、$N=123$とする。
(1)2桁のN、3桁のNはそれぞれ何通りできるか。
(2)2桁のNのうち、十の位の数と一の位の数の和が7とならないものは何通りできるか。
(3)百の位が7のとき、どの2つの位の数の和も7とならないものは何通りできるか。
(4)3桁のNのうち、どの2つの位の数の和も7とならないものは何通りできるか。
大問4(微分法)
【問題文】
a、bを実数の定数とする。関数$f(x)=x^3+ax^2+bx+a^2$は$x=-1$で極大値14をとるとする。
(1)a、bの値を求めよ。
(2)$y=f(x)$のグラフとx軸は異なる3点で交わり、そのx座標を小さい方から順に$\alpha,\beta,γ$とする。
(i)$\alpha\gt -3$を示せ。
(ii)$P(3,0)、B(\beta,0)、C(γ,0)$とする。線分PBとPCの長さの大小を比較せよ。
大問5(数列)
【問題文】
2つの数列${a_n}{b_n}$が$a_1=\dfrac{3}{2}、a_{n+1}=\dfrac{3}{2a_n-\dfrac{1}{2}} (n=1,2,3,...)$$ b_1=p、b_{n+1}=b_n+p-\dfrac{1}{2\left(\dfrac{3}{2}\right)^{n-1}} (n=1,2,3,...)$ を満たしている。ただし、pは整数とする。
(1)$a_n$をnの式で表せ。
(2)$b_n$をpとnの式で表せ。
(3)$c_n=b_n-a_n$とする。$c_n$が$n=4$で最大となるようなpの値を求めよ。
この動画を見る 

【数A】確率:2019年第2回高2K塾記述模試の第4問を解説!「難しそうだから手を付けませんでした...」と言っていた生徒と状況整理をしながら解いていくと「簡単でしたね!」となりました。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
Oを原点とする座標平面上に点Pがある。最初、Pは原点Oにあり、1個のサイコロを1回投げるごとに次の(規則)に従ってPを動かす。
(規則)
・1,2いずれかの目が出たときはx軸の正の方向に1だけ動かす。
・3の目が出たときはx軸の正の方向に2だけ動かす。
・4,5,6いずれかの目が出たときはy軸の正の方向に1だけ動かす。
例えば、さいころを2回投げて、1回目に2の目、2回目に5の目が出たとき、Pは O(0,0)→点(1,0)→点(1,1) と動く。
(1)サイコロを3回投げたとき、Pの座標が(3,0)である確率を求めよ。
(2)サイコロを3回投げたとき、Pのy座標が2である確率を求めよ。
(3)サイコロを6回投げたとき、Pの座標が(5,2)である確率を求めよ。
(4)サイコロを6回投げたとき、Pのx座標が5であったという条件のもとで、Pのy座標が2である条件付き確率を求めよ。
この動画を見る 

【数A】高2生必見!!2020年度 第2回 K塾高2模試 大問4_整数の性質

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
(1)x,zは0以上の整数とする。
(i)$z=0,1,2,3,4,5,6,7,8,9,10$について、$2^z$を7で割ったときの余りを順に書き 並べよ。ただし、$2^0=1$とする。
(ii)x,zは等式$ 7x=2^z+3$・・・① を満たしている。$0\leqq z\leqq 10$のとき、等式①を満たすx,zの組(x,z)をすべて求めよ。
(2)0以上の整数x,y,zが、等式 $(4x+3y)(x-y)=2^z$・・・② を満たしている。
(i)xが奇数、yが偶数、$z=5$のとき、等式②を満たすx,yの組(x,y)をすべて求めよ。
(ii)xが奇数、yが偶数、$0\leqq z\leqq 20$のとき、等式②を満たすx,y,zの組(x,y,z)の個数 を求めよ。
(iii)$z=100$で、xとyは偶奇を問わないとき、等式②を満たすx,yの組(x,y)の個数 を求めよ。
この動画を見る 

【数学】2023年度 第2回 K塾高2模試 全問解説

アイキャッチ画像
単元: #大学入試過去問(数学)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
第1問:小問集合
(1)$(3x-1)(9x^2+3x+1)$を展開せよ。
(2)$\displaystyle \frac{x-1}{1+\frac{1}{x+2}}$を簡単にせよ。
(3)2次関数$y=2x^2-x+1$の最小値を求めよ。
(4)iを虚数単位とする。$\displaystyle \frac{(2+i)^2}{i}$を$a+bi$(a,bは実数)の形で表せ。
(5)$AB=4,BC=\sqrt{7},CA=\sqrt{3}$である△ABCにおいて、cos∠BACの値と△ABCの面積を求めよ。
(6)a,a,b,b,c,cの6文字を1列に並べるとき、並べ方は全部で何通りか。このうち、a,aが隣り合わないような並べ方は何通りか。

第2問-i:2次不等式
aは正の定数とする。実数xについての2つの不等式 $ax^2+(2a-5)x-2a+1<0$・・・①、$│2x-3│≦3$・・・②がある。
(1)a=2のとき、①を解け。
(2)②を解け。
(3)②を満たすすべての実数xに対して、①が成り立つようなaの値の範囲を求めよ。

第2問-ii:図形と方程式
xy平面上に、2つの円$C₁:x^2+y^2-10x-a^2-4a+21=0、C2:x^2+y^2=5$がある。また、C₂上の点P(2,1)におけるC₂の 接線を$l$とする。ただし、aはa>-2を満たす定数とする。
(1)a=1のとき、C₁の中心の座標と半径を求めよ。
(2)$l$の方程式を求めよ。
(3)C₁と$l$が接するようなaの値を求めよ。また、このとき のC1と$l$の接点をQとするとき、線分PQの長さを求めよ。

第3問:複素数と方程式
a,bを実数の定数とする。xの3次式$ f(x)=x^3+(a+3)x^2+(3a+b)x+3b$ と、3次方程式 $f(x)=0$・・・(*)がある。
(1)f(-3)を求めよ。
(2)a=-1かつb=1のとき、(*)を解け。
(3)(*)が異なる2つの虚数解をもつためのa,bの条件を求めよ。
(4)a,bが(3)で求めた条件を満たすとし、(*)の異なる2つの虚数解をα,βとする。このとき、$α^2,β^2$がともに(*)の解となるようなa,bの値の組(a,b)をすべて求めよ。

第4問:確率
5枚のカード1,1,2,2,3が入った袋が1つあり、次の操作(I)を考える。
操作(I): 袋から2枚のカードを同時に取り出し、取り出した2枚のカードに書かれた数の和をXとし、取り出した2枚のカードを袋に戻す。
(1)操作(I)を1回行う。
(i)X=2となる確率を求めよ。
(ii)X=4となる確率を求めよ。
さらに、1枚の硬貨を用意し、操作(I)で定まるXの値に対して、次の操作(II)を考える。
操作(II):1枚の硬貨を投げ、表が出たらY=X+1とし、裏が出たらY=Xとする。
操作(I), (II)を(I), (II)の順に1回ずつ行うことを操作Tとする。
(2)操作Tを1回行う。
(i)Y=4となる確率を求めよ。
(ii)Yの期待値を求めよ。
(3)操作Tを3回繰り返すとき、3回のYの値の合計が15になる確率を求めよ。

第5問:三角関数
aを実数の定数とする。θの方程式$cos2θ+2(5a-1)sinθ-12a^2+6a-1=0$・・・(*)がある
(1)cos2θをsinθを用いて表せ。
(2)a=0とする。0≦θ<2πにおいて、(*)を解け。
(3)0≦θ<2πにおいて、(*)が異なる4個の解をもつとする。
(i)aのとり得る値の範囲を求めよ。
(ii)0≦θ<2πにおける(*)の4個の解を、小さい順にθ₁,θ₂,θ₃,θ₄とする。(θ₂-θ₁)+(θ₄-θ₃)=πとなるようなaの値を求めよ。

第6問:数列
nは自然数。等差数列{a_n}があり、a₁+a₂=8,a₄+a₅=20である。また、公比が実数である等比数列{b_n}があり、
b₁+b₂=4, b₄+b₅=108である。
(1)数列{a_n}の一般項を求めよ。また、数列{a_n}の初項から第n項までの和S_nを求めよ。
(2)数列{b_n}の一般項を求めよ。
(3)数列{c_n}は、左から順に次のような項が並べられた数列である。 b₁がa₁個、b₂がa₂個、b₃がa₃個、...、b_nがa_n個、... すなわち、{c}: b₁,...,b₁, b₂,...,b₂, b₃,..,b₃,...,b_n,...,b_n,...
(i)C₂₀₂₃の値を求めよ。ただし、結果は2¹⁰⁰のように指数表示のままでよい。
(ii)$\displaystyle \sum_{k=1}^{2023}c_k$の値を求めよ。ただし、結果は$2^{100}$のように指数表示のままでよい。
この動画を見る 
PAGE TOP