2020年センター試験数学IA, IIB【予備校講師が分析】 - 質問解決D.B.(データベース)

2020年センター試験数学IA, IIB【予備校講師が分析】

問題文全文(内容文):
上岡駿介先生がセンター試験数学IA,IIBの解説をします。

解説を聞いて、復習の参考にしましょう!
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: Morite2 English Channel
問題文全文(内容文):
上岡駿介先生がセンター試験数学IA,IIBの解説をします。

解説を聞いて、復習の参考にしましょう!
投稿日:2020.01.20

<関連動画>

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第5問〜平面図形、チェバの定理、メネラウスの定理、方べきの定理

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第5問}$
$\triangle ABC$において、辺$BC$を$7:1$に内分する点を$D$とし、辺$AC$を$7:1$に
内分する点を$E$とする。線分$AD$と線分$BE$の交点を$F$とし、直線$CF$
と辺$AB$の交点を$G$とすると

$\displaystyle \frac{GB}{AG}=\boxed{\ \ ア\ \ }, \displaystyle \frac{FD}{AF}=\displaystyle \frac{\boxed{\ \ イ\ \ }}{\boxed{\ \ ウ\ \ }}, \displaystyle \frac{FC}{GF}=\displaystyle \frac{\boxed{\ \ エ\ \ }}{\boxed{\ \ オ\ \ }}$

である。したがって

$\displaystyle \frac{\triangle CDGの面積}{\triangle BFGの面積}=\displaystyle \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キク\ \ }}\displaystyle$

となる。

4点$B,D,F,G$が同一円周上にあり、かつ$FD=1$のとき

$AB=\boxed{\ \ ケコ\ \ }$

である。さらに、$AE=3\sqrt7$とするとき、$AE・AC=\boxed{\ \ サシ\ \ }$であり

$\angle AEG=\boxed{\ \ ス\ \ }$

である。$\boxed{\ \ ス\ \ }$に当てはまるものを、次の⓪~③のうちから一つ選べ。
⓪$\angle BGE$
①$\angle ADB$
②$\angle ABC$
③$\angle BAD$

2020センター試験過去問
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第3問〜場合の数、確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第3問}$
[1]次の$\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。

正しい記述は$\boxed{\ \ ア\ \ }$と$\boxed{\ \ イ\ \ }$である。

⓪1枚のコインを投げる試行を5回繰り返すとき、少なくとも1回は表が
出る確率をpとすると、$p \gt 0.95$である。
①袋の中に赤球と白球が合わせて8個入っている。球を1個取り出し、色
を調べてから袋に戻す試行を行う。この試行を5回繰り返したところ赤球
が3回出た。したがって、1回の試行で赤球が出る確率は$\displaystyle\frac{3}{5}$である。
②箱の中に「い」と書かれたカードが1枚、「ろ」と書かれたカードが2枚、
「は」と書かれたカードが2枚の合計5枚のカードが入っている。同時に
2枚カードを取り出すとき、書かれた文字が異なる確率は$\displaystyle\frac{4}{5}$である。
③コインの面を見て「オモテ(表)または「ウラ(裏)」とだけ発言するロボット
が2体ある。ただし、どちらのロボットも出た面に対して正しく発言
する確率が0.9、正しく発言しない確率が0.1であり、これら2体は互いに
影響されるされることなく発言するものとする。いま、ある人が1枚のコインを
投げる。出た面を見た2体が、ともに「オモテ」と発言した時に、実際に
表が出ている確率をpとすると、$p \leqq 0.9$である。


[2]1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回
投げるごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に-1点を
加える。はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

・持ち点が再び0点になった場合は、その時点で終了する。
・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で
終了する。

(1)コインを2回投げ終わって持ち点が-2点である確率は$\displaystyle\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}$である。
また、コインを2回投げ終わって持ち点が1点である確率は
$\displaystyle\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}$である。

(2)持ち点が再び0点になることが起こるのは、コインを$\boxed{\ \ キ\ \ }$回投げ
終わったときである。コインを$\boxed{\ \ キ\ \ }$回投げ終わって持ち点が0点になる
確率は$\displaystyle\frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }}$である。

(3)ゲームが終了した時点で持ち点が4点である確率は$\displaystyle\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サシ\ \ }}$である。

(4)ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ
終わって持ち点が1点である条件付き確率は$\displaystyle\frac{\boxed{\ \ ス\ \ }}{\boxed{\ \ セ\ \ }}$である。

2020センター試験過去問
この動画を見る 

【英語】センター試験 2017年 第2問A(1)~(5)

アイキャッチ画像
単元: #大学入試過去問(数学)#センター試験・共通テスト関連#センター試験#数学(高校生)
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
前置詞や形容詞を補語にする方法,比較の強調,最上級の強調,分詞構文に関して解説していきます.
この動画を見る 

最速。2020年センター試験解説。福田の入試問題解説〜2020年センター試験IA第2問〜三角比、データの分析

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#図形と計量#データの分析#三角比への応用(正弦・余弦・面積)#データの分析#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\large第2問}$
[1]$\triangle ABC$において、$BC=2\sqrt2$とする。$\angle ACB$の二等分線と辺$AB$の交点
を$D$とし、$CD=\sqrt2,\cos\angle BCD=\displaystyle\frac{3}{4}$とする。このとき、$BD=\boxed{\ \ ア\ \ }$
であり、

$\sin\angle ADC=\frac{\sqrt{\boxed{\ \ イウ\ \ }}}{\boxed{\ \ エ\ \ }}$

である。$\displaystyle\frac{AC}{AD}=\sqrt{\boxed{\ \ オ\ \ }}$ であるから

$AD=\boxed{\ \ カ\ \ }$

である。また、$\triangle ABC$の外接円の半径は$\displaystyle\frac{\boxed{\ \ キ\ \ }\sqrt{\boxed{\ \ ク\ \ }}}{\boxed{\ \ ケ\ \ }}$ である。

[2](1)次の$\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }$に当てはまるものを、下の⓪~⑤のうちから
一つずつ選べ。ただし、解答の順序は問わない。

99個の観測地からなるデータがある。四分位数について述べた記述
で、どのようなデータでも成り立つものは$\boxed{\ \ コ\ \ }$と$\boxed{\ \ サ\ \ }$である。

⓪平均値は第1四分位数と第3四分位数の間にある。
①四分位範囲は標準偏差より大きい。
②中央値よりっ地裁観測地の個数は49個である。
③最大値に等しい観測値を1個削除しても第1四分位数は変わらない。
④第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地の個数は51個である。
⑤第1四分位数より小さい観測値と、第3四分位数より大きい観測値と
をすべて削除すると、残りの観測地からなるデータの範囲はもとの
データの四分位範囲に等しい。


(2)図1(※動画参照)は、平成27年の男の市区町村別平均寿命のデータを47の都道府県
P1,P2,$\cdots$,P47ごとに箱ひげ図にして、並べたものである。

次の$(\textrm{I}),(\textrm{II}),(\textrm{III})$は図1に関する記述である。

$(\textrm{I})$四分位範囲はどの都道府県においても1以下である。
$(\textrm{II})$箱ひげ図は中央値が小さい値から大きい値の順に上から
下へ並んである。
$(\textrm{III})$P1のデータのどの値とP47のデータのどの値とを
比較しても1.5以上の差がある。

次の$\boxed{\ \ シ\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。

$(\textrm{I}),(\textrm{II}),(\textrm{III})$の正誤の組み合わせとして正しいものは$\boxed{\ \ シ\ \ }$である。
(※選択肢は動画参照)


(3)ある県は20の市区町村からなる、図2(※動画参照)はその県の男の市区町村別平均
寿命のヒストグラムである。なお、ヒストグラムの各階級の区間は、左側の数値を
含み、右側の数値を含まない。

次の$\boxed{\ \ ス\ \ }$に当てはまるものを、下の⓪~⑦のうちから一つ選べ。
図2のヒストグラムに対応する箱ひげ図は$\boxed{\ \ ス\ \ }$である。
(※選択肢は動画参照)


(4)図3(※動画参照)は、平成27年の男の都道府県別平均寿命と女の都道府県別平均
寿命の散布図である。2個の点が重なって区別できないところは黒丸にしている。
図には補助的に切片が5.5から7.5まで0.5刻みで傾き1の直線を5本付加している。
次の$\boxed{\ \ セ\ \ }$に当てはまるものを、下の⓪~③のうちから一つ選べ。

都道府県ごとに男女の平均寿命の差をとったデータに対するヒストグラム
は$\boxed{\ \ セ\ \ }$である。なお、ヒストグラムの各階級の区間は、
左側の数値を含み、右側の数値を含まない。
(※選択肢は動画参照)

2020センター試験過去問
この動画を見る 

【数Ⅰ】集合と命題:センター試験2013年

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#センター試験・共通テスト関連#センター試験#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
三角形に関する条件p,q,rを次のように定める。p:3つの内角がすべて異なる q:直角三角形でない r:45度の内角は1つもない。条件pの否定をpバーで表し、同様にq,rはそれぞれ条件qバー、rバーの否定を表すものとする。
[1]命題「r ⇒ (pまたはq)」の対偶は「(ア)⇒r」である。(ア)に当てはまるものを, 次の(0)~(3)のうちから1つ選べ。
(0)(pかつq) (1) (pかつq) (2) (pまたはq ) (3) (pまたはq)

[2] 次の(0)~(4)のうち、命題「(pまたはq) ⇒ r」に対する反例となっている三角形は(イ)と(ウ)である。(イ)と(ウ)に当てはまるものを、(0)~(4)のうちから1つずつ選べ。ただし、(イ)と(ウ)の解答の順序は問わない。
(0) 直角二等辺三角形 (1) 内角が30度,45度,105度の三角形 (2) 正三角形 (3) 3辺の長さが3,4,5の三角形 (4) 頂角が45度の二等辺三角形

[3] rは(pまたはq)であるための(エ) 。(エ)に当てはまるものを、次の(0)~(3)のうちから1つ選べ。
(0) 必要十分条件である (1) 必要条件であるが十分条件ではない (2) 十分条件であるが必要条件ではない (3) 必要条件でも十分条件でもない
この動画を見る 
PAGE TOP